Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

After quantum particles have interacted, they generally remain in an entangled state and are correlated at a distance by quantum-mechanical links that can be used to transmit and process information in nonclassical ways. This implies programmable sequences of operations to generate and analyze the entanglement of complex systems. We have demonstrated such a procedure for two atoms and a single-photon cavity mode, engineering and analyzing a three-particle entangled state by a succession of controlled steps that address the particles individually. This entangling procedure can, in principle, operate on larger numbers of particles, opening new perspectives for fundamental tests of quantum theory.

Bibliography

Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.-M., & Haroche, S. (2000). Step-by-Step Engineered Multiparticle Entanglement. Science, 288(5473), 2024–2028.

Authors 7
  1. Arno Rauschenbeutel (first)
  2. Gilles Nogues (additional)
  3. Stefano Osnaghi (additional)
  4. Patrice Bertet (additional)
  5. Michel Brune (additional)
  6. Jean-Michel Raimond (additional)
  7. Serge Haroche (additional)
References 33 Referenced 595
  1. Bennett C. H., DiVincenzo D. P., Nature 404, 247 (2000). (10.1038/35005001) / Nature by Bennett C. H. (2000)
  2. 10.1103/PhysRev.47.777
  3. Zeilinger A., Rev. Mod. Phys. 71, S288 (1998). (10.1103/RevModPhys.71.S288) / Rev. Mod. Phys. by Zeilinger A. (1998)
  4. 10.1103/PhysRevLett.70.1895
  5. Pan J.-W., et al., Nature 390, 575 (1998). / Nature by Pan J.-W. (1998)
  6. 10.1103/PhysRevLett.80.1121
  7. 10.1126/science.282.5389.706
  8. C. H. Bennett G. Brassard A. Ekert Sci. Am. (October 1992) p. 50. (10.1038/scientificamerican1092-50)
  9. Rarity J. G., Owens P. C. M., Tapster P. R., J. Mod. Opt. 41, 2435 (1994). (10.1080/09500349414552281) / J. Mod. Opt. by Rarity J. G. (1994)
  10. Pan J. W., Bouwmeester D., Daniell M., Weinfurter H., Zeilinger A., Nature 403, 515 (2000). (10.1038/35000514) / Nature by Pan J. W. (2000)
  11. 10.1126/science.275.5298.350
  12. Braunstein S. L., et al., Phys. Rev. Lett. 83, 1054 (1999). (10.1103/PhysRevLett.83.1054) / Phys. Rev. Lett. by Braunstein S. L. (1999)
  13. 10.1103/PhysRevLett.81.3631
  14. 10.1038/35005011
  15. 10.1103/PhysRevLett.79.1
  16. Domokos P., Raimond J. M., Brune M., Haroche S., Phys. Rev. A 52, 3554 (1995). (10.1103/PhysRevA.52.3554) / Phys. Rev. A by Domokos P. (1995)
  17. A three–atom-cavity experiment was recently reported [
  18. 10.1038/35001526
  19. ]. It exhibited atomic energy correlations but did not detect entanglement.
  20. S. Haroche et al. in Laser Spectroscopy 14 R. Blatt J. Eschner D. Leibfried F. Schmidt-Kaler Eds. (World Scientific New York 1999) pp. 140–149.
  21. S. B. Zheng J. Opt. B 1 534 (1999). (10.1088/1464-4266/1/5/307)
  22. Brune M., et al., Phys. Rev. Lett. 76, 1800 (1996). (10.1103/PhysRevLett.76.1800) / Phys. Rev. Lett. by Brune M. (1996)
  23. Maı̂tre X., et al., Phys. Rev. Lett. 79, 769 (1997). (10.1103/PhysRevLett.79.769) / Phys. Rev. Lett. by Maı̂tre X. (1997)
  24. 10.1103/PhysRevLett.83.5166
  25. 10.1038/22275
  26. Nussenzveig P., et al., Phys. Rev. A 48, 3991 (1993). (10.1103/PhysRevA.48.3991) / Phys. Rev. A by Nussenzveig P. (1993)
  27. 10.1119/1.16243
  28. Haroche S., Ann. N.Y. Acad. Sci. 755, 73 (1995). (10.1111/j.1749-6632.1995.tb38957.x) / Ann. N.Y. Acad. Sci. by Haroche S. (1995)
  29. B. T. H. Varcoe S. Brattke B.-G. Englert H. Walther in Laser Spectroscopy 14 R. Blatt J. Eschner D. Leibfried F. Schmidt-Kaler Eds. (World Scientific New York 1999) pp. 130–139.
  30. Because the experiment involves three levels for each atom there are 27 detection channels in all. We only give the channels corresponding to the relevant transitions for each atom: e → g for A 1 and A 3 ; g → i for A 2 . The other channels are weakly populated by spurious effects such as spontaneous emission outside C residual thermal photons influence of the R 2 (I) or P 2 pulses on the other atoms and absorption of the cavity field by A 2 as a result of imperfect 2π Rabi rotation. The total contribution of these transfer processes is less than 15%.
  31. Mermin N. D., Phys. Rev. Lett. 65, 1838 (1990). (10.1103/PhysRevLett.65.1838) / Phys. Rev. Lett. by Mermin N. D. (1990)
  32. Davidovich L., Zagury N., Brune M., Raimond J. M., Haroche S., Phys. Rev. A 50, R895 (1994). (10.1103/PhysRevA.50.R895) / Phys. Rev. A by Davidovich L. (1994)
  33. Laboratoire Kastler Brossel is a Unité Mixte de Recherche Ecole Normale Supérieure Université Pierre et Marie Curie et CNRS (UMR8552). Supported in part by the European Community and Japan Science and Technology Corporation (International Cooperative Research Project Quantum Entanglement project). We thank P. Goy and M. Gross for help with the microwave technology.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:48 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 5:26 a.m.)
Indexed 4 weeks, 1 day ago (Aug. 6, 2025, 9:33 a.m.)
Issued 25 years, 2 months ago (June 16, 2000)
Published 25 years, 2 months ago (June 16, 2000)
Published Print 25 years, 2 months ago (June 16, 2000)
Funders 0

None

@article{Rauschenbeutel_2000, title={Step-by-Step Engineered Multiparticle Entanglement}, volume={288}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.288.5473.2024}, DOI={10.1126/science.288.5473.2024}, number={5473}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Rauschenbeutel, Arno and Nogues, Gilles and Osnaghi, Stefano and Bertet, Patrice and Brune, Michel and Raimond, Jean-Michel and Haroche, Serge}, year={2000}, month=jun, pages={2024–2028} }