Abstract
A combination of experimental, molecular dynamics, and kinetics modeling studies is applied to a system of concentrated aqueous sodium chloride particles suspended in air at room temperature with ozone, irradiated at 254 nanometers to generate hydroxyl radicals. Measurements of the observed gaseous molecular chlorine product are explainable only if reactions at the air-water interface are dominant. Molecular dynamics simulations show the availability of substantial amounts of chloride ions for reaction at the interface, and quantum chemical calculations predict that in the gas phase chloride ions will strongly attract hydroxl radicals. Model extrapolation to the marine boundary layer yields daytime chlorine atom concentrations that are in good agreement with estimates based on field measurements of the decay of selected organics over the Southern Ocean and the North Atlantic. Thus, ion-enhanced interactions with gases at aqueous interfaces may play a more generalized and important role in the chemistry of concentrated inorganic salt solutions than was previously recognized.
References
41
Referenced
597
- B. J. Finlayson-Pitts and J. N. Pitts Jr. Chemistry of the Upper and Lower Atmosphere: Theory Experiments and Applications (Academic Press San Diego CA 2000) and references therein.
-
Jayne J. T., Davidovits P., Worsnop D. R., Zahniser M. S., Kolb C. E., J. Phys. Chem. 94, 6041 (1990).
(
10.1021/j100378a076
) / J. Phys. Chem. by Jayne J. T. (1990) -
Donaldson D. J., Guest J. A., Goh M. C.J. Phys. Chem.9919959313.
(
10.1021/j100023a002
) / J. Phys. Chem. by Donaldson D. J. (1995) -
Hu J. H., et al., J. Phys. Chem. 99, 8768 (1995).
(
10.1021/j100021a050
) / J. Phys. Chem. by Hu J. H. (1995) -
Magi L., et al., J. Phys. Chem. A 101, 4943 (1997).
(
10.1021/jp970646m
) / J. Phys. Chem. A by Magi L. (1997) -
Hanson D. R., J. Phys. Chem. B 101, 4998 (1997).
(
10.1021/jp970461f
) / J. Phys. Chem. B by Hanson D. R. (1997) -
W. Behnke V. Scheer C. Zetzsch in Naturally Produced Organohalogens (Kluwer Dordrecht Netherlands 1995) pp. 375–384.
(
10.1007/978-94-011-0061-8_35
) -
Oum K. W., Lakin M. J., DeHaan D. O., Brauers T., Finlayson-Pitts B. J., Science 279, 74 (1998).
(
10.1126/science.279.5347.74
) / Science by Oum K. W. (1998) -
Chameides W. L., Stelson A. W., J. Geophys. Res. 97, 20565 (1992).
(
10.1029/92JD01923
) / J. Geophys. Res. by Chameides W. L. (1992) -
Sander R., Crutzen P. J., J. Geophys. Res. 101, 9121 (1996).
(
10.1029/95JD03793
) / J. Geophys. Res. by Sander R. (1996) -
D. R. Kester I. W. Duedell D. N. Conners R. M. Pytkowicz Limnol. Oceanogr. 12 176 (1967).
(
10.4319/lo.1967.12.1.0176
) - The apparatus is described in detail by D. O. De Haan et al. [ Int. Rev. Phys. Chem. 18 345 (1999)]. Briefly it consists of a 561-l aluminum and stainless steel chamber that is coated with halocarbon wax (Halocarbon Products Series 1500 River Edge NJ) to minimize the reactivity of the surfaces. It has White cell optics for UV–visible absorption spectrometry used to measure O 3 and FTIR for O 3 CO 2 and other infrared-absorbing gases. For both optical systems the base path is 2 m; a total path of 52.5 m was used in these studies. The Cl 2 is measured with API-MS in the negative ion mode using the peaks at mass to electron ratio ( m/e ) = 70 72 and 74.
-
Tang I. N., Tridico A. C., Fung K. H., J. Geophys. Res. 102, 23269 (1997).
(
10.1029/97JD01806
) / J. Geophys. Res. by Tang I. N. (1997) -
Dabdub D., Seinfeld J. H., Parallel Computing 22, 111 (1996).
(
10.1016/0167-8191(95)00063-1
) / Parallel Computing by Dabdub D. (1996) - These species include HO 2 H 2 O 2 OH O 3 O 2 HCl HOCl Cl 2 OClO and CO 2 . The rate of transport due to gas-phase diffusion and mass transport at the droplet interface for a given species is evaluated via a mass transfer coefficient k mt calculated as kmt=Rp23Dg+4Rp3c̄α−1where R p is the droplet radius taken to be the radius of average surface area in the experiments D g is the gas-phase diffusivity c̅ is the mean molecular speed and α is the mass accomodation coefficient. The effect of diffusion on the overall rate of reaction of species in the bulk of the droplet is determined for species that are transported actively between the gas and aqueous phase and their hydrolysis and/or dissociation products. The average bulk concentration for these species is determined by solving a system of tightly coupled nonlinear equations emerging from solutions to the steady state aqueous-phase diffusion equation. In these equations we consider both loss and production terms within the droplet that are calculated from the average bulk concentration of other species. Specifically the average bulk concentration for species “j” is described as Cj〉=QCj*+(1−Q)PjkL j where Q=3coth qjqj−1qj2 and qj=RpkL jDaq j1/2 D aq represents the aqueous-phase diffusivity k L is the effective overall first-order rate constant for aqueous-phase losses and P is the overall production term.
- S. E. Schwartz in Chemistry of Multiphasic Atmospheric Systems NATO ASI Series W. Jaeschke Ed. (Springer-Verlag New York 1986) vol. G6 pp. 415–471.
- K. S. Pitzer in Activity Coefficients in Electrolyte Solutions K.S. Pitzer Ed. (CRC Press Boca Raton FL ed. 2 1991) pp. 75–153.
- V. L. Snoeyink and D. Jenkins Water Chemistry (Wiley New York 1980).
-
Jungwirth P., J. Phys. Chem. A 104, 145 (2000).
(
10.1021/jp993010z
) / J. Phys. Chem. A by Jungwirth P. (2000) -
Degrève L., da Silva F. L. B., J. Chem. Phys. 110, 3070 (1999).
(
10.1063/1.477903
) / J. Chem. Phys. by Degrève L. (1999) -
Petersen C. P., Gordon M. S., J. Phys. Chem. A 103, 4162 (1999).
(
10.1021/jp984806l
) / J. Phys. Chem. A by Petersen C. P. (1999) -
Jarvis N. L., Scheiman M. A., J. Phys. Chem. 72, 74 (1968).
(
10.1021/j100847a014
) / J. Phys. Chem. by Jarvis N. L. (1968) -
Wilson M. A., Porohille A., J. Chem. Phys. 95, 6005 (1991).
(
10.1063/1.461592
) / J. Chem. Phys. by Wilson M. A. (1991) -
Perera L., Berkowitz M. L., J. Chem. Phys. 95, 1954 (1991).
(
10.1063/1.460992
) / J. Chem. Phys. by Perera L. (1991) - G. J. Martyna et al. PINY−MD program unpublished.
-
Pearlman D. A., et al., Comput. Phys. Commun. 91, 1 (1995).
(
10.1016/0010-4655(95)00041-D
) / Comput. Phys. Commun. by Pearlman D. A. (1995) -
MacKerell A. D., et al., J. Phys. Chem B. 102, 3586 (1998).
(
10.1021/jp973084f
) / J. Phys. Chem B. by MacKerell A. D. (1998) - Essmann U., Perera L., Berkowitz M. L., Darden T., Pedersen L. G., Chem. Phys. 103, 8577 (1995). / Chem. Phys. by Essmann U. (1995)
-
L. M. Ramaniah M. Bernasconi M. Parrinello J. Chem. Phys. 109 6839 (1998).
(
10.1063/1.477250
) - M. J. Frisch et al. Gaussian98 computer program (Gaussian Pittsburgh PA 1998).
-
Davis M. J., Koizumi H., Schatz G. C., Bradforth S. E., Neumark D. M., J. Chem. Phys. 101, 4708 (1994).
(
10.1063/1.468463
) / J. Chem. Phys. by Davis M. J. (1994) -
Sevilla M. D., Summerfield S., Eliezer I., Rak J., Symons M. C. R., J. Phys. Chem. A 101, 2910 (1997).
(
10.1021/jp964097g
) / J. Phys. Chem. A by Sevilla M. D. (1997) - Other mechanisms considered are as follows: (i) the reaction of OH with Cl − to give HOCl − which diffuses into the bulk and reacts but does not generate significant amounts of Cl 2 ; (ii) electron transfer from OH...Cl − to form HOCl which then reacts with OH...Cl − . This gives good fits to the experimental observations but is sufficiently endothermic that it does not appear to be a viable mechanism. (iii) Reaction of OH...Cl − with Cl − to form Cl 2 − which generates Cl 2 by photodetachment. This mechanism predicted a significant induction time for gaseous Cl 2 formation which is inconsistent with the experimental observations. (iv) Decomposition of the bulk aqueous phase HOCl − to generate ClO 2− + H + proposed as a possibility by Jayson et al. [ J. Chem. Soc. Faraday Trans. I. 69 1597 (1973)]. This acidifies the droplet and generates Cl 2 via reactions 6 through 9. Unless HOCl − is assumed to be an infinitely strong acid this does not generate significant Cl 2 concentrations; (v) the reaction of the surface (OH… Cl − ) interface with Cl − to generate Cl 2 − which then self-reacts in the surface film to form Cl 2 . This can also match the experimental data reasonably well if it is assumed that Cl 2 − is “anchored” to the surface and does not diffuse into the bulk aqueous phase. Preliminary molecular dynamics calculations do indeed indicate that Cl 2 − is locked to the interface of the concentrated salt microaerosols.
-
Jacobi H. W., Wicktor F., Herrmann H., Zellner R., Int. J. Chem. Kinet. 31, 169 (1999).
(
10.1002/(SICI)1097-4601(1999)31:3<169::AID-KIN2>3.0.CO;2-K
) / Int. J. Chem. Kinet. by Jacobi H. W. (1999) -
Wingenter O. W., et al., J. Geophys. Res. 104, 21819 (1999).
(
10.1029/1999JD900203
) / J. Geophys. Res. by Wingenter O. W. (1999) -
Wingenter O. W., et al., J. Geophys. Res. 101, 4331 (1996).
(
10.1029/95JD02457
) / J. Geophys. Res. by Wingenter O. W. (1996) -
See for example K. W. Oum M. J. Lakin B. J. Finlayson-Pitts Geophys. Res. Lett. 25 3923 (1998).
(
10.1029/1998GL900078
) -
Barrie L., Platt U., Tellus 49B, 450 (1997).
(
10.3402/tellusb.v49i5.15984
) / Tellus by Barrie L. (1997) -
Taube H., J. Am. Chem. Soc. 64, 2468 (1942).
(
10.1021/ja01262a072
) / J. Am. Chem. Soc. by Taube H. (1942) -
Griffiths F. B., Bates T. S., Quinn P. K., Clementson L. A., Parslow J. S., J. Geophys. Res. 104, 21649 (1999).
(
10.1029/1999JD900386
) / J. Geophys. Res. by Griffiths F. B. (1999) - The authors are grateful to NSF; the Department of Energy; the UCI Council on Research Computing and Library Resources; and NATO for support of this work. E.K. thanks the Organization of American States for a PRA Fellowship. We thank J. N. Pitts Jr. J. C. Hemminger R. E. Huie D. Margerum R. Sander and P. Davidovits for helpful discussions and E. Chapman C. Berkowitz and C. W. Spicer for providing some of the gas-phase model.
Dates
Type | When |
---|---|
Created | 23 years ago (July 27, 2002, 5:37 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 13, 2024, 5:27 a.m.) |
Indexed | 3 weeks, 4 days ago (Aug. 2, 2025, 12:55 a.m.) |
Issued | 25 years, 4 months ago (April 14, 2000) |
Published | 25 years, 4 months ago (April 14, 2000) |
Published Print | 25 years, 4 months ago (April 14, 2000) |
@article{Knipping_2000, title={Experiments and Simulations of Ion-Enhanced Interfacial Chemistry on Aqueous NaCl Aerosols}, volume={288}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.288.5464.301}, DOI={10.1126/science.288.5464.301}, number={5464}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Knipping, E. M. and Lakin, M. J. and Foster, K. L. and Jungwirth, P. and Tobias, D. J. and Gerber, R. B. and Dabdub, D. and Finlayson-Pitts, B. J.}, year={2000}, month=apr, pages={301–306} }