Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Soft lithography is an alternative to silicon-based micromachining that uses replica molding of nontraditional elastomeric materials to fabricate stamps and microfluidic channels. We describe here an extension to the soft lithography paradigm, multilayer soft lithography, with which devices consisting of multiple layers may be fabricated from soft materials. We used this technique to build active microfluidic systems containing on-off valves, switching valves, and pumps entirely out of elastomer. The softness of these materials allows the device areas to be reduced by more than two orders of magnitude compared with silicon-based devices. The other advantages of soft lithography, such as rapid prototyping, ease of fabrication, and biocompatibility, are retained.

Bibliography

Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., & Quake, S. R. (2000). Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science, 288(5463), 113–116.

Authors 5
  1. Marc A. Unger (first)
  2. Hou-Pu Chou (additional)
  3. Todd Thorsen (additional)
  4. Axel Scherer (additional)
  5. Stephen R. Quake (additional)
References 42 Referenced 3,407
  1. Roylance L. M., Angell J. B., IEEE Trans. Electron Devices ED-26, 1911 (1979). (10.1109/T-ED.1979.19795) / IEEE Trans. Electron Devices by Roylance L. M. (1979)
  2. Yazdi N., Ayazi F., Najafi K., Proc. IEEE 86, 1640 (1998). (10.1109/5.704269) / Proc. IEEE by Yazdi N. (1998)
  3. Tufte O. N., Chapman P. W., Long D., J. Appl. Phys. 33, 3322 (1962). (10.1063/1.1931164) / J. Appl. Phys. by Tufte O. N. (1962)
  4. Kuhn L., Bassous E., Lane R., IEEE Trans. Electron Devices ED-25, 1257 (1978). (10.1109/T-ED.1978.19261) / IEEE Trans. Electron Devices by Kuhn L. (1978)
  5. Lin L. Y., Goldstein E. L., Tkach R. W., IEEE J. Selected Top. Quantum Electron. 5, 4 (1999). (10.1109/2944.748098) / IEEE J. Selected Top. Quantum Electron. by Lin L. Y. (1999)
  6. Muller R. S., Lau K. Y., Proc. IEEE 86, 1705 (1998). (10.1109/5.704276) / Proc. IEEE by Muller R. S. (1998)
  7. Hornbeck L. J., Nelson W. E., OSA Tech. Dig. Ser. 8, 107 (1988). / OSA Tech. Dig. Ser. by Hornbeck L. J. (1988)
  8. 10.1126/science.261.5123.895
  9. Jacobson S. C., Hergenroder R., Koutny L. B., Ramsey J. M., Anal. Chem. 66, 1114 (1994). (10.1021/ac00079a029) / Anal. Chem. by Jacobson S. C. (1994)
  10. 10.1126/science.280.5366.1046
  11. Shoji S., Top. Curr. Chem. 194, 163 (1998). (10.1007/3-540-69544-3_7) / Top. Curr. Chem. by Shoji S. (1998)
  12. Gravesen P., Branebjerg J., Jensen O. S., J. Micromech. Microeng. 3, 168 (1993). (10.1088/0960-1317/3/4/002) / J. Micromech. Microeng. by Gravesen P. (1993)
  13. 10.1143/JJAP.36.L794
  14. 10.1126/science.273.5273.347
  15. 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  16. Effenhauser C. S., Bruin G. J. M., Paulus A., Ehrat M., Anal. Chem. 69, 3451 (1997). (10.1021/ac9703919) / Anal. Chem. by Effenhauser C. S. (1997)
  17. 10.1126/science.276.5313.779
  18. Fu A. Y., Spence C., Scherer A., Arnold F. H., Quake S. R., Nature Biotechnol. 17, 1109 (1999). (10.1038/15095) / Nature Biotechnol. by Fu A. Y. (1999)
  19. Hosokawa K., Fujii T., Endo I., Anal. Chem. 71, 4781 (1999). (10.1021/ac990571d) / Anal. Chem. by Hosokawa K. (1999)
  20. 10.1088/0960-1317/9/3/301
  21. 10.1021/ac980656z
  22. 10.1126/science.285.5424.83
  23. For multilayers a thick layer was prepared as previously described; each thin layer was baked at 80°C for 20 min. The growing thick layer was assembled on each new thin layer and bonded by baking at 80°C for 20 min. Seven-layer devices have been produced by this method; no obvious limitations exist to limit the number of layers.
  24. Lötters J. C., Olthuis W., Veltink P. H., Bergveld P., J. Micromech. Microeng. 7, 145 (1997). (10.1088/0960-1317/7/3/017) / J. Micromech. Microeng. by Lötters J. C. (1997)
  25. Conductive silicone was created by the addition of a fine carbon black (Vulcan XC72; Cabot Billerica MA) at 10% or higher concentration by weight. Conductivity increased with carbon black concentration from 5.6 × 10 −16 to ∼5 × 10 −3 (ohm·cm) −1 . Magnetic silicone was created by the addition of iron powder (∼1 μm particle size); up to 20% Fe by weight was added. For both conductive and magnetic silicones multilayer bonding functioned normally.
  26. K. Ikuta K. Hirowatari T. Ogata in Proceedings IEEE International MEMS 94 Conference (IEEE Piscataway NJ 1994) pp. 1–6.
  27. 10.1126/science.286.5441.942
  28. Jacobson S. C., McKnight T. E., Ramsey J. M., Anal. Chem. 71, 4455 (1999). (10.1021/ac990576a) / Anal. Chem. by Jacobson S. C. (1999)
  29. Effenhauser C. S., Bruin G. J. M., Paulus A., Electrophoresis 18, 2203 (1997). (10.1002/elps.1150181211) / Electrophoresis by Effenhauser C. S. (1997)
  30. Washizu M., Suzuki S., Kurosawa O., Nishizaka T., Shinohara T., IEEE Trans. Ind. Appl. 30, 835 (1994). (10.1109/28.297897) / IEEE Trans. Ind. Appl. by Washizu M. (1994)
  31. Pethig R., Markx G. H., Trends Biotechnol. 15, 426 (1997). (10.1016/S0167-7799(97)01096-2) / Trends Biotechnol. by Pethig R. (1997)
  32. Brechtel R., Hoffmann W., Rudiger H., Watzig H., J. Chromatogr. A 716, 97 (1995). (10.1016/0021-9673(95)00717-2) / J. Chromatogr. A by Brechtel R. (1995)
  33. Lucy C. A., Underhill R. S., Anal. Chem. 68, 300 (1996). (10.1021/ac950632h) / Anal. Chem. by Lucy C. A. (1996)
  34. The magnitude of flow (and even its direction) depends in a complicated fashion on ionic strength and type the presence of surfactants and the charge on the walls of the flow channel; furthermore because electrolysis is taking place continuously the capacity of buffer to resist pH changes is finite. Precise control of flow thus requires calibration for each new buffer or solute and can be difficult when the exact composition of a sample is not known in advance. Electroosmotic flow can also induce unwanted electrophoretic separation of molecules creating demixing problems. Dielectrophoresis does not require electrolysis and therefore does not cause bubble formation but still suffers from sample and solvent sensitivity.
  35. Each control channel was connected to the common port of a miniature three-way switch valve (LHDA1211111H; Lee Valve Westbrook CT) powered by a fast Zener-diode circuit and controlled by a digital data acquisition card (AT-DIO-32HS; National Instruments Austin TX). Regulated external pressure was provided to the normally closed port allowing the control channel to be pressurized or vented to atmosphere by switching the miniature valve.
  36. If one used another actuation method that did not suffer from opening and closing lag this valve would run at ∼375 Hz. The spring constant can be adjusted by changing the membrane thickness; this allows optimization for either fast opening or fast closing.
  37. E. coli were pumped at 10 Hz through the channel. Samples of known volume were taken from the output well (pumped) and the input well (control) and serial dilutions of each were plated on Luria-Bertani agar plates and grown overnight at 37°C. Viability was assessed by counting colonies in the control and pumped samples and correcting for sample volumes and dilution.
  38. Fahrenberg J., et al., J. Micromech. Microeng. 5, 77 (1995). (10.1088/0960-1317/5/2/029) / J. Micromech. Microeng. by Fahrenberg J. (1995)
  39. Goll C., et al., J. Micromech. Microeng. 6, 77 (1996). (10.1088/0960-1317/6/1/017) / J. Micromech. Microeng. by Goll C. (1996)
  40. Yang X., Grosjean C., Tai Y. C., Ho C. M., Sensors Actuators A 64, 101 (1998). (10.1016/S0924-4247(97)01660-9) / Sensors Actuators A by Yang X. (1998)
  41. Young A. M., Bloomstein T. M., Palmacci S. T., J. Biomech. Eng. Trans. ASME 121, 2 (1999). (10.1115/1.2798039) / J. Biomech. Eng. Trans. ASME by Young A. M. (1999)
  42. This work was partially supported by NIH (NS-11756 DA-9121).
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:35 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 5:10 a.m.)
Indexed 22 hours, 10 minutes ago (Aug. 31, 2025, 6:24 a.m.)
Issued 25 years, 4 months ago (April 7, 2000)
Published 25 years, 4 months ago (April 7, 2000)
Published Print 25 years, 4 months ago (April 7, 2000)
Funders 0

None

@article{Unger_2000, title={Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography}, volume={288}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.288.5463.113}, DOI={10.1126/science.288.5463.113}, number={5463}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Unger, Marc A. and Chou, Hou-Pu and Thorsen, Todd and Scherer, Axel and Quake, Stephen R.}, year={2000}, month=apr, pages={113–116} }