Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Bulk quantities of defect-free silicon (Si) nanowires with nearly uniform diameters ranging from 40 to 50 angstroms were grown to a length of several micrometers with a supercritical fluid solution-phase approach. Alkanethiol-coated gold nanocrystals (25 angstroms in diameter) were used as uniform seeds to direct one-dimensional Si crystallization in a solvent heated and pressurized above its critical point. The orientation of the Si nanowires produced with this method could be controlled with reaction pressure. Visible photoluminescence due to quantum confinement effects was observed, as were discrete optical transitions in the ultraviolet-visible absorbance spectra.

Bibliography

Holmes, J. D., Johnston, K. P., Doty, R. C., & Korgel, B. A. (2000). Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science, 287(5457), 1471–1473.

Authors 4
  1. Justin D. Holmes (first)
  2. Keith P. Johnston (additional)
  3. R. Christopher Doty (additional)
  4. Brian A. Korgel (additional)
References 34 Referenced 1,435
  1. For a recent review see
  2. Prokes S. M., Wang K. L., Mater. Res. Sci. Bull. 24, 13 (1999). (10.1557/S0883769400052842) / Mater. Res. Sci. Bull. by Prokes S. M. (1999)
  3. and references therein.
  4. 10.1021/ar9700365
  5. Many calculations of quantum confinement in silicon nanowires exist. See for example
  6. Buda F., Kohanoff J., Parrinello M., Phys. Rev. Lett. 69, 1272 (1992); (10.1103/PhysRevLett.69.1272) / Phys. Rev. Lett. by Buda F. (1992)
  7. 10.1103/PhysRevLett.69.1232
  8. Sanders G. D., Chang Y.-C., Phys. Rev. B 45, 9202 (1992) ; (10.1103/PhysRevB.45.9202) / Phys. Rev. B by Sanders G. D. (1992)
  9. Shen M.-Y., Zhang S.-L., Phys. Lett. A 176, 254 (1993); (10.1016/0375-9601(93)91045-7) / Phys. Lett. A by Shen M.-Y. (1993)
  10. Yeh C.-Y., Zhang S. B., Zunger A., Phys. Rev. B 50, 14405 (1994); (10.1103/PhysRevB.50.14405) / Phys. Rev. B by Yeh C.-Y. (1994)
  11. ; and references therein.
  12. Brus L., J. Phys. Chem. 98, 3575 (1994). (10.1021/j100065a007) / J. Phys. Chem. by Brus L. (1994)
  13. 10.1103/PhysRevLett.68.631
  14. 10.1103/PhysRevLett.68.1579
  15. Yorikawa H., Uchida H., Muramatsu S., J. Appl. Phys. 79, 3619 (1996). (10.1063/1.361416) / J. Appl. Phys. by Yorikawa H. (1996)
  16. 10.1126/science.271.5251.933
  17. 10.1126/science.270.5243.1791
  18. Trentler T. J., et al., J. Am. Chem. Soc. 119, 2172 (1997); (10.1021/ja9640859) / J. Am. Chem. Soc. by Trentler T. J. (1997)
  19. Heath J. R., Chem. Phys. Lett. 208, 263 (1993). (10.1016/0009-2614(93)89073-Q) / Chem. Phys. Lett. by Heath J. R. (1993)
  20. 10.1063/1.1753975
  21. For example see
  22. Westwater J., Gosain D. P., Tomiya S., Usui S., Ruda H., J. Vac. Sci. Technol. B 15, 554 (1997). (10.1116/1.589291) / J. Vac. Sci. Technol. B by Westwater J. (1997)
  23. and references therein.
  24. 10.1126/science.279.5348.208
  25. 10.1063/1.121199
  26. Under a nitrogen atmosphere the nanocrystals were dispersed in diphenylsilane with a Au:Si mole ratio of 0.1% then loaded into an inconnell high-pressure cell (0.2 ml) and sealed under a nitrogen atmosphere. The cell was attached via a three-way valve to a stainless steel high-pressure tube (∼40 cm 3 ) equipped with a stainless steel piston. A high-pressure liquid chromatography pump (LDC Analytical) was used to pump deionized water into the back of the piston and displace oxygen-free anhydrous hexane through an inlet heat exchanger and into the reaction cell to the desired pressure of either 200 or 270 bar. The cell was covered with heating tape (0.6 m) and heated to 500°C (±0.2 °C) using a platinum resistance thermometer and a temperature controller. The reaction proceeded at these conditions for 1 hour.
  27. The dodecanethiol-capped Au nanocrystals were formed using the procedures outlined in
  28. 10.1039/C39940000801
  29. Korgel B. A., Fitzmaurice D., Phys. Rev. Lett. 80, 3531 (1998); (10.1103/PhysRevLett.80.3531) / Phys. Rev. Lett. by Korgel B. A. (1998)
  30. . The nanocrystals had a mean diameter of 25 Å with a SD about the mean of ±20%.
  31. M. A. McHugh and V. J. Krukonis Supercritical Fluids Extraction: Principles and Practice (Butterworth- Heinman MA ed. 2 1993).
  32. XPS revealed that the samples consisted of less than 0.1% Au with ratios of Si:O of 2:1 and Si:C of 1:3. The relatively high concentrations of carbon and oxygen stem from the fact that the volume of the ∼40 Å thick coating of carbon and oxygen surrounding the 40 Å diameter wire has a volume three times that of the silicon core.
  33. Wolkin M. V., Jorne J., Fauchet P. M., Allan G., Delerue C., Phys. Rev. Lett. 82, 197 (1999). (10.1103/PhysRevLett.82.197) / Phys. Rev. Lett. by Wolkin M. V. (1999)
  34. K.P.J. thanks the U.S. Department of Energy and NSF for support. B.A.K. thanks DuPont for support through a Young Professor Grant.
Dates
Type When
Created 23 years ago (July 27, 2002, 5:35 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 5:16 a.m.)
Indexed 2 weeks ago (Aug. 7, 2025, 4:42 p.m.)
Issued 25 years, 5 months ago (Feb. 25, 2000)
Published 25 years, 5 months ago (Feb. 25, 2000)
Published Print 25 years, 5 months ago (Feb. 25, 2000)
Funders 0

None

@article{Holmes_2000, title={Control of Thickness and Orientation of Solution-Grown Silicon Nanowires}, volume={287}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.287.5457.1471}, DOI={10.1126/science.287.5457.1471}, number={5457}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Holmes, Justin D. and Johnston, Keith P. and Doty, R. Christopher and Korgel, Brian A.}, year={2000}, month=feb, pages={1471–1473} }