10.1126/science.287.5453.622
Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO 2 or NH 3 , the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.

Bibliography

Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., & Dai, H. (2000). Nanotube Molecular Wires as Chemical Sensors. Science, 287(5453), 622–625.

Authors 7
  1. Jing Kong (first)
  2. Nathan R. Franklin (additional)
  3. Chongwu Zhou (additional)
  4. Michael G. Chapline (additional)
  5. Shu Peng (additional)
  6. Kyeongjae Cho (additional)
  7. Hongjie Dai (additional)
References 28 Referenced 5,407
  1. M. S. Dresselhaus G. Dresselhaus P. C. Eklund Science of Fullerenes and Carbon Nanotubes (Academic Press San Diego CA 1996). (10.1016/B978-012221820-0/50003-4)
  2. 10.1038/384147a0
  3. Wong S., Joselevich E., Woolley A., Cheung C., Lieber C., Nature 394, 52 (1998). (10.1038/27873) / Nature by Wong S. (1998)
  4. 10.1126/science.270.5239.1179
  5. 10.1126/science.284.5418.1340
  6. 10.1038/29954
  7. Special issue on Gas-Sensing Materials MRS Bull. 24 (1999). (10.1557/S0883769400052453)
  8. Shimizu Y., Egashira M., MRS Bull. 24, 18 (1999). (10.1557/S0883769400052465) / MRS Bull. by Shimizu Y. (1999)
  9. Takao Y., Miyazaki K., Shimizu Y., Egashira M., J. Electrochem. Soc. 141, 1028 (1994). (10.1149/1.2054836) / J. Electrochem. Soc. by Takao Y. (1994)
  10. 10.1126/science.1329199
  11. A. Mandelis and C. Christofides Physics Chemistry and Technology of Solid State Gas Sensor Devices (Wiley New York 1993).
  12. Miasik J., Hooper A., Tofield B., J. Chem. Soc. Faraday Trans. 1 82, 1117 (1986). (10.1039/f19868201117) / J. Chem. Soc. Faraday Trans. 1 by Miasik J. (1986)
  13. Capone S., Mongelli S., Rella R., Siciliano P., Valli L., Langmuir 15, 1748 (1999). (10.1021/la980608+) / Langmuir by Capone S. (1999)
  14. Longergan M. C., et al., Chem. Mater. 8, 2298 (1996). (10.1021/cm960036j) / Chem. Mater. by Longergan M. C. (1996)
  15. 10.1063/1.122477
  16. Soh T., et al., Appl. Phys. Lett. 75, 627 (1999). (10.1063/1.124462) / Appl. Phys. Lett. by Soh T. (1999)
  17. 10.1038/27632
  18. Sberveglieri G., Groppelli S., Nelli P., Sens. Actuators B4, 457 (1991). (10.1016/0925-4005(91)80151-9) / Sens. Actuators by Sberveglieri G. (1991)
  19. C. Zhou J. Kong H. Dai in preparation.
  20. S. Peng and K. Cho in preparation.
  21. M. L. Hair Infrared Spectroscopy in Surface Chemistry (Dekker New York 1967).
  22. Cheng A., Steele W. A., J. Chem. Phys. 92, 3867 (1990). (10.1063/1.457843) / J. Chem. Phys. by Cheng A. (1990)
  23. Sjovall P., So S. K., Kasemo B., Franchy R., Ho W., Chem. Phys. Lett. 172, 125 (1990). (10.1016/0009-2614(90)87284-X) / Chem. Phys. Lett. by Sjovall P. (1990)
  24. Rowntree P., Scoles G., Xu J., J. Chem. Phys. 92, 3853 (1990). (10.1063/1.457842) / J. Chem. Phys. by Rowntree P. (1990)
  25. Heiney P. A., J. Phys. Chem. Solids 53, 1333 (1992). (10.1016/0022-3697(92)90231-2) / J. Phys. Chem. Solids by Heiney P. A. (1992)
  26. Lee R. S., Kim H. J., Fischer J. E., Thess A., Smalley R. E., Nature 388, 255 (1997). (10.1038/40822) / Nature by Lee R. S. (1997)
  27. Grigorian L., et al., Phys. Rev. Lett. 80, 5560 (1998). (10.1103/PhysRevLett.80.5560) / Phys. Rev. Lett. by Grigorian L. (1998)
  28. We thank J. Han L. Yang and M. Tang for discussions. Supported by NSF Defense Advanced Research Projects Agency/Office of Naval Research Petroleum Research Fund of the American Chemical Society Semiconductor Research Cooperation the Camile and Henry Dreyfus Foundation and the Laboratory for Advanced Materials at Stanford University.
Dates
Type When
Created 23 years ago (July 27, 2002, 5:40 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 4:09 a.m.)
Indexed 1 day, 22 hours ago (Aug. 21, 2025, 12:34 p.m.)
Issued 25 years, 6 months ago (Jan. 28, 2000)
Published 25 years, 6 months ago (Jan. 28, 2000)
Published Print 25 years, 6 months ago (Jan. 28, 2000)
Funders 0

None

@article{Kong_2000, title={Nanotube Molecular Wires as Chemical Sensors}, volume={287}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.287.5453.622}, DOI={10.1126/science.287.5453.622}, number={5453}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Kong, Jing and Franklin, Nathan R. and Zhou, Chongwu and Chapline, Michael G. and Peng, Shu and Cho, Kyeongjae and Dai, Hongjie}, year={2000}, month=jan, pages={622–625} }