Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

A scheme is proposed wherein nuclear magnetic resonance (NMR) can be induced and monitored using only optical fields. In analogy to radio-frequency fields used in traditional NMR, circularly polarized light creates electron spins in semiconductors whose hyperfine coupling could tip nuclear moments. Time-resolved Faraday rotation experiments were performed in which the frequency of electron Larmor precession was used as a magnetometer of local magnetic fields experienced by electrons in n-type gallium arsenide. Electron spin excitation by a periodic optical pulse train appears not only to prepare a hyperpolarized nuclear moment but also to destroy it resonantly at magnetic fields proportional to the pulse frequency. This resonant behavior is in many ways supportive of a simple model of optically induced NMR, but a curious discrepancy between one of the observed frequencies and classic NMR values suggests that this phenomenon is more complex.

Bibliography

Kikkawa, J. M., & Awschalom, D. D. (2000). All-Optical Magnetic Resonance in Semiconductors. Science, 287(5452), 473–476.

Authors 2
  1. J. M. Kikkawa (first)
  2. D. D. Awschalom (additional)
References 33 Referenced 217
  1. C. P. Slichter Principles of Magnetic Resonance (Springer-Verlag New York ed. 2 1978). (10.1007/978-3-662-12784-1)
  2. Optical Orientation F. Meier and B. P. Zakharchenya Eds. (North-Holland New York 1984).
  3. Marohn J. A., et al., Phys. Rev. Lett. 75, 1364 (1995). (10.1103/PhysRevLett.75.1364) / Phys. Rev. Lett. by Marohn J. A. (1995)
  4. Feher G., Phys. Rev. 114, 1219 (1959); (10.1103/PhysRev.114.1219) / Phys. Rev. by Feher G. (1959)
  5. Feher G., Gere E. A., Phys. Rev. 114, 1245 (1959). (10.1103/PhysRev.114.1245) / Phys. Rev. by Feher G. (1959)
  6. Paget D., Lampel G., Sapoval B., Safarov V. I., Phys. Rev. B 15, 5780 (1977); (10.1103/PhysRevB.15.5780) / Phys. Rev. B by Paget D. (1977)
  7. Paget D., Phys. Rev. B 24, 3776 (1981); (10.1103/PhysRevB.24.3776) / Phys. Rev. B by Paget D. (1981)
  8. ; Phys. Rev. B 25 4444 (1982). (10.1103/PhysRevB.25.4444)
  9. 10.1126/science.7539550
  10. 10.1126/science.281.5377.686
  11. Seck M., Potemski M., Wyder P., Phys. Rev. B 56, 7422 (1997). (10.1103/PhysRevB.56.7422) / Phys. Rev. B by Seck M. (1997)
  12. Dixon D. C., Wald K. R., McEuen P. L., Melloch M. R., Phys. Rev. B 56, 4743 (1997); (10.1103/PhysRevB.56.4743) / Phys. Rev. B by Dixon D. C. (1997)
  13. Cho H., et al., Phys. Rev. Lett. 81, 2522 (1998); (10.1103/PhysRevLett.81.2522) / Phys. Rev. Lett. by Cho H. (1998)
  14. Kronmuller S., et al., Phys. Rev. Lett. 81, 2526 (1998) . (10.1103/PhysRevLett.81.2526) / Phys. Rev. Lett. by Kronmuller S. (1998)
  15. 10.1038/30156
  16. Crooker S. A., Baumberg J. J., Flack F., Samarth N., Awschalom D. D., Phys. Rev. Lett. 77, 2814 (1996). (10.1103/PhysRevLett.77.2814) / Phys. Rev. Lett. by Crooker S. A. (1996)
  17. 10.1126/science.277.5330.1284
  18. 10.1103/PhysRevLett.80.4313
  19. Kikkawa J. M., Awschalom D. D., Phys. Today 52, 33 (1999). / Phys. Today by Kikkawa J. M. (1999)
  20. and references therein.
  21. Berkovitz V. L., Hermann C., Lampel G., Nakamura A., Safarov V. I., Phys. Rev. B 18, 1767 (1978). (10.1103/PhysRevB.18.1767) / Phys. Rev. B by Berkovitz V. L. (1978)
  22. Overhauser A. W., Phys. Rev. 92, 411 (1953); (10.1103/PhysRev.92.411) / Phys. Rev. by Overhauser A. W. (1953)
  23. Abragam A., Phys. Rev. 98, 1729 (1955). (10.1103/PhysRev.98.1729) / Phys. Rev. by Abragam A. (1955)
  24. A. Abragam The Principles of Nuclear Magnetism (Clarendon Press Oxford 1961). (10.1119/1.1937646)
  25. Zakharchenya V. P., Kompan M. E., Fleisher V. G., Zh. ETF Pis. Red. 19, 734 (1974). / Zh. ETF Pis. Red. by Zakharchenya V. P. (1974)
  26. [ J. Exp. Theor. Phys. Lett. 19 378 (1974)].
  27. G. Salis et al. unpublished data.
  28. Kronmuller S., et al., Phys. Rev. Lett. 82, 4070 (1999). (10.1103/PhysRevLett.82.4070) / Phys. Rev. Lett. by Kronmuller S. (1999)
  29. Novikov V. A., Fleisher V. G., Zh. Eksp. Teor. Fiz. 74, 1026 (1978). / Zh. Eksp. Teor. Fiz. by Novikov V. A. (1978)
  30. [ Sov. Phys. J. Exp. Theor. Phys. 47 539 (1978)].
  31. Kalevich V. K., et al., Pis'ma Zh. Eksp. Teor. Fiz. 35, 17 (1982). / Pis'ma Zh. Eksp. Teor. Fiz. by Kalevich V. K. (1982)
  32. [ J. Exp. Theor. Phys. Lett. 35 20 (1982)].
  33. Supported by grant DAAG55-98-1-0366 from the Army Research Office by grant N00014-99-1096 from DARPA/ONR and by grants DMR-9701072 and QUEST STC DMR-91-20007 from NSF.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:40 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 4:18 a.m.)
Indexed 4 weeks ago (Aug. 2, 2025, 12:47 a.m.)
Issued 25 years, 7 months ago (Jan. 21, 2000)
Published 25 years, 7 months ago (Jan. 21, 2000)
Published Print 25 years, 7 months ago (Jan. 21, 2000)
Funders 0

None

@article{Kikkawa_2000, title={All-Optical Magnetic Resonance in Semiconductors}, volume={287}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.287.5452.473}, DOI={10.1126/science.287.5452.473}, number={5452}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Kikkawa, J. M. and Awschalom, D. D.}, year={2000}, month=jan, pages={473–476} }