Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Ultrasonic deposition creates a thin film of polymer on a tubular, macroporous, stainless steel support. Using polyfurfuryl alcohol as the nanoporous carbon precursor and a pyrolysis temperature of 723 kelvin, a membrane was prepared with the following permeances, measured in moles per square meter per Pascal per second: nitrogen, 1.8 × 10 −12 ; oxygen, 5.6 × 10 −11 ; helium, 3.3 × 10 −10 ; and hydrogen, 6.1 × 10 −10 . The ideal separation factors as compared to that for nitrogen are 30:1, 178:1, and 331:1 for oxygen, helium, and hydrogen, respectively.

Bibliography

Shiflett, M. B., & Foley, H. C. (1999). Ultrasonic Deposition of High-Selectivity Nanoporous Carbon Membranes. Science, 285(5435), 1902–1905.

Authors 2
  1. Mark B. Shiflett (first)
  2. Henry C. Foley (additional)
References 34 Referenced 316
  1. Armor J. N., J. Membr. Sci. 147, 217 (1998); (10.1016/S0376-7388(98)00124-0) / J. Membr. Sci. by Armor J. N. (1998)
  2. Keizer K., Verweij H., Chemtech 26, 37 (1996). / Chemtech by Keizer K. (1996)
  3. 10.1126/science.279.5357.1710
  4. Harold M. P., Lee C., Chem. Eng. Sci. 52, 1923 (1997); (10.1016/S0009-2509(97)00024-9) / Chem. Eng. Sci. by Harold M. P. (1997)
  5. Armor J. N., Catal. Today 25, 199 (1995). (10.1016/0920-5861(95)00073-O) / Catal. Today by Armor J. N. (1995)
  6. 10.1016/S0376-7388(96)00206-2
  7. Boudreau L. C. Kuck J. A. Tsapatsis M. 152 41 (1999); (10.1016/S0376-7388(98)00166-5)
  8. Li Y. G., Yong S., Jiang W. Z., Peng C. G., Mater. Lett. 37, 221 (1998); (10.1016/S0167-577X(98)00095-0) / Mater. Lett. by Li Y. G. (1998)
  9. Funke H. H., et al., J. Membr. Sci. 129, 77 (1997); (10.1016/S0376-7388(96)00333-X) / J. Membr. Sci. by Funke H. H. (1997)
  10. Bakker W. J. W. Kapteijn F. Poppe J. Moulijn J. A. 117 57 (1996). (10.1016/0376-7388(96)00035-X)
  11. Nair B. N., J. Membr. Sci. 135, 237 (1997); (10.1016/S0376-7388(97)00137-3) / J. Membr. Sci. by Nair B. N. (1997)
  12. Ohya H. Masaoka K. Aihara M. Negishi Y. 146 9 (1998). (10.1016/S0376-7388(98)00084-2)
  13. Acharya M., Raich B. A., Foley H. C., Harold M. P., Lerou J. J., Ind. Eng. Chem. Res. 36, 2924 (1997); (10.1021/ie960769d) / Ind. Eng. Chem. Res. by Acharya M. (1997)
  14. Chen Y. D. Yang R. T. 33 3146 (1994); (10.1021/ie00036a033)
  15. Rao M. B., Sircar S., J. Membr. Sci. 110, 10 (1996); / J. Membr. Sci. by Rao M. B. (1996)
  16. Geiszler V. C., Koros W. J., Ind. Eng. Chem. Res. 35, 2999 (1996). (10.1021/ie950746j) / Ind. Eng. Chem. Res. by Geiszler V. C. (1996)
  17. Foley H. C., Micropor. Mater. 4, 407 (1995). (10.1016/0927-6513(95)00014-Z) / Micropor. Mater. by Foley H. C. (1995)
  18. Armor J. N., Adv. Chem. Ser. 245, 321 (1995); / Adv. Chem. Ser. by Armor J. N. (1995)
  19. Gaffney T. R., Curr. Opin. Solid State Mater. Sci. 1, 69 (1996). (10.1016/S1359-0286(96)80013-1) / Curr. Opin. Solid State Mater. Sci. by Gaffney T. R. (1996)
  20. Kane M. S., et al., Chem. Mater. 8, 2159 (1996); (10.1021/cm960085w) / Chem. Mater. by Kane M. S. (1996)
  21. ; M. Acharya et al. Philos. Mag. B in press.
  22. Mariwala R. K., Foley H. C., Ind. Eng. Chem. Res. 33, 2314 (1994); (10.1021/ie00034a009) / Ind. Eng. Chem. Res. by Mariwala R. K. (1994)
  23. ; T. A. Braymer Carbon 32 445 (1994); (10.1016/0008-6223(94)90165-1)
  24. Mariwala R. K., Foley H. C., Ind. Eng. Chem. Res. 33, 607 (1994). (10.1021/ie00027a018) / Ind. Eng. Chem. Res. by Mariwala R. K. (1994)
  25. Koresh J. E., Soffer A., Sep. Sci. Technol. 22, 973 (1987); (10.1080/01496398708068993) / Sep. Sci. Technol. by Koresh J. E. (1987)
  26. Koresh J. E., Soffer A., J. Chem. Soc. Faraday Trans. I 82, 2057 (1986). (10.1039/f19868202057) / J. Chem. Soc. Faraday Trans. I by Koresh J. E. (1986)
  27. We cut the sintered tubes to a length of 25 mm and welded solid stainless steel tubing to both ends. The solid tubing was cleaned in an ultrasonic bath and dried in an oven for 2 hours at 393 K. After cleaning we handled the tubes with Nitrile gloves and stored them in a dehumidified chamber. PFA resin was diluted with acetone to form a 25 weight % PFA solution. A syringe pump filled with this solution delivered the precursor to the ultrasonic nozzle at a rate of 1 cc/min. The ultrasonic nozzle fabricated at DuPont was powered by a Dukane ultrasonic generator and was operated at 40 kHz. With the ultrasonic nozzle held 6 mm above the surface we rotated the porous metal tubes at 150 rpm and translated the nozzle in the axial direction at speeds ranging from 1 to 10 mm/s. Acetone evaporated from the wet coating while the tubes were rotated for an additional 10 min in air. The masses of the coatings were determined after this air-drying step. Depending on the axial coating speed 1 to 50 mg of PFA could be applied in each coating step.
  28. The coated tubes were placed inside a quartz pipe 57 mm in diameter fitted with end caps designed to hold the coated tubes in the center while they were being rotated. The quartz pipe was fitted into a temperature-controlled furnace and purged with scientific-grade He (total impurities <1 part per million) at a flow rate of 100 cc/min for 15 min. The temperature was raised at a rate of 5.0°C/min to the final temperature (473 to 873 K) and held there for 120 min. To ensure uniformity during pyrolysis we rotated the tubes at 30 rpm.
  29. The gas was introduced on the core (feed) side of the NPCM at a pressure of 300 kPa and the shell side pressure response was measured continuously. The membrane module was evacuated and returned to atmospheric pressure on both the core and shell sides before the introduction of the next probe gas. All experiments were conducted at 295 K.
  30. Hutchinson J. W., Suo Z., Adv. Appl. Mech. 29, 63 (1991). (10.1016/S0065-2156(08)70164-9) / Adv. Appl. Mech. by Hutchinson J. W. (1991)
  31. R. C. Reid J. M. Prausnitz B. E. Poling The Properties of Gases and Liquids (McGraw-Hill New York ed. 4 1987).
  32. P ss and P cs (Pa) are the pressures on the shell side and core side of the tubular membrane respectively; t (s) is time; A (m 2 ) is the membrane area; R (m 3 Pa mol −1 K −1 ) is the gas constant; T (K) is the temperature; V ss (m 3 ) is the shell side volume; π′ is the gas permeability (mol m –1 sec –1 Pa –1 ); and δ (m) is the membrane thickness.
  33. Robeson L. M., J. Mem. Sci. 62, 165 (1991). (10.1016/0376-7388(91)80060-J) / J. Mem. Sci. by Robeson L. M. (1991)
  34. Supported by Department of Energy Office of Basic Energy Science State of Delaware Research Partnership and DuPont.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:42 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 3:48 a.m.)
Indexed 2 months, 1 week ago (June 27, 2025, 4:03 p.m.)
Issued 25 years, 11 months ago (Sept. 17, 1999)
Published 25 years, 11 months ago (Sept. 17, 1999)
Published Print 25 years, 11 months ago (Sept. 17, 1999)
Funders 0

None

@article{Shiflett_1999, title={Ultrasonic Deposition of High-Selectivity Nanoporous Carbon Membranes}, volume={285}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.285.5435.1902}, DOI={10.1126/science.285.5435.1902}, number={5435}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Shiflett, Mark B. and Foley, Henry C.}, year={1999}, month=sep, pages={1902–1905} }