Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

A whole-genome restriction map of Deinococcus radiodurans , a radiation-resistant bacterium able to survive up to 15,000 grays of ionizing radiation, was constructed without using DNA libraries, the polymerase chain reaction, or electrophoresis. Very large, randomly sheared, genomic DNA fragments were used to construct maps from individual DNA molecules that were assembled into two circular overlapping maps (2.6 and 0.415 megabases), without gaps. A third smaller chromosome (176 kilobases) was identified and characterized. Aberrant nonlinear DNA structures that may define chromosome structure and organization, as well as intermediates in DNA repair, were directly visualized by optical mapping techniques after γ irradiation.

Bibliography

Lin, J., Qi, R., Aston, C., Jing, J., Anantharaman, T. S., Mishra, B., White, O., Daly, M. J., Minton, K. W., Venter, J. C., & Schwartz, D. C. (1999). Whole-Genome Shotgun Optical Mapping of Deinococcus radiodurans. Science, 285(5433), 1558–1562.

Authors 11
  1. Jieyi Lin (first)
  2. Rong Qi (additional)
  3. Christopher Aston (additional)
  4. Junping Jing (additional)
  5. Thomas S. Anantharaman (additional)
  6. Bud Mishra (additional)
  7. Owen White (additional)
  8. Michael J. Daly (additional)
  9. Kenneth W. Minton (additional)
  10. J. Craig Venter (additional)
  11. David C. Schwartz (additional)
References 50 Referenced 149
  1. Schwartz D. C., Cantor C. R., Cell 37, 67 (1984); (10.1016/0092-8674(84)90301-5) / Cell by Schwartz D. C. (1984)
  2. 10.1126/science.3296194
  3. Kohara Y., Akiyama K., Isono K., Cell 50, 495 (1987). (10.1016/0092-8674(87)90503-4) / Cell by Kohara Y. (1987)
  4. Link A. J., Olson M. V., Genetics 127, 681 (1991); (10.1093/genetics/127.4.681) / Genetics by Link A. J. (1991)
  5. Riles L. et al. 134 81 (1993). (10.1093/genetics/134.1.81)
  6. 10.1126/science.277.5331.1453
  7. Fleischmann R. D. et al. 269 496 (1995).
  8. Cai W., et al., Proc. Natl. Acad. Sci. U.S.A. 95, 3390 (1998). (10.1073/pnas.95.7.3390) / Proc. Natl. Acad. Sci. U.S.A. by Cai W. (1998)
  9. Aston C., Hiort C., Schwartz D. C., Methods Enzymol. 303, 55 (1999); (10.1016/S0076-6879(99)03006-2) / Methods Enzymol. by Aston C. (1999)
  10. Schwartz D. C., et al., Science 262, 110 (1993); (10.1126/science.8211116) / Science by Schwartz D. C. (1993)
  11. ; W. Bautsch et al. in Genome Mapping A Practical Approach P. H. Dear Ed. (Oxford Univ. Press New York 1997) pp. 281–313;
  12. Schwartz D. C., Samad A., Curr. Opin. Biotechnol. 8, 70 (1997); (10.1016/S0958-1669(97)80160-7) / Curr. Opin. Biotechnol. by Schwartz D. C. (1997)
  13. Samad A., et al., Nature 378, 516 (1995); (10.1038/378516a0) / Nature by Samad A. (1995)
  14. Wang W., Lin J., Schwartz D. C., Biophys. J. 75, 513 (1998); (10.1016/S0006-3495(98)77540-X) / Biophys. J. by Wang W. (1998)
  15. Reed J., Singer E., Kresbach G., Schwartz D. C., Anal. Biochem. 259, 80 (1998). (10.1006/abio.1998.2640) / Anal. Biochem. by Reed J. (1998)
  16. Ananthraman T. S., Mishra B., Schwartz D. C., J. Comp. Biol. 4, 91 (1997). (10.1089/cmb.1997.4.91) / J. Comp. Biol. by Ananthraman T. S. (1997)
  17. Meng X., Benson K., Chada K., Huff E., Schwartz D. C., Nature Genet. 9, 432 (1995). (10.1038/ng0495-432) / Nature Genet. by Meng X. (1995)
  18. Cai W., Aburatani H., Housman D., Wang Y., Schwartz D. C., Proc. Natl. Acad. Sci. U.S.A. 92, 5164 (1995). (10.1073/pnas.92.11.5164) / Proc. Natl. Acad. Sci. U.S.A. by Cai W. (1995)
  19. Jing J., et al., Genome Res. 9, 175 (1999). (10.1101/gr.9.2.175) / Genome Res. by Jing J. (1999)
  20. T. S. Anantharaman B. Mishra D. C. Schwartz Tech. Rep. 760 (Courant Institute New York University New York 1998); T. S. Anantharaman B. Mishra D. C. Schwartz in Seventh International Conference on Intelligent Systems for Molecular Biology (ISMB99) in press.
  21. Gentig (12) uses an approximation algorithm for finding an almost optimal scoring set of contigs while constraining the false positive error rate below a negligible value. Under a simple overlap rule dubbed Type D that determines when two genomic DNA molecules can be deemed to have a common subfragment a conservative estimate of the false probability can be given as 4pc4 exp(−βn/2)∑i=k∞ (βn/2)ii!where p c is the digestion rate β is the relative sizing error n is the expected number of restriction fragments per genomic DNA molecule and k is the integer parameter directly related to overlap threshold ratio θ.
  22. E. Lee B. Porter E. Huff unpublished data.
  23. Z. Lai unpublished data.
  24. F. Blattner unpublished data.
  25. O. White et al. data not shown.
  26. Deinococcus radiodurans has a number of powerful DNA repair systems including a fast-acting dimer excision system as well as an unusual double-stranded DNA break repair system (31) [
  27. Mattimore V., Battista J. R., J. Bacteriol. 178, 633 (1996); (10.1128/jb.178.3.633-637.1996) / J. Bacteriol. by Mattimore V. (1996)
  28. 10.1016/0921-8777(95)00014-3
  29. ]. It carries multiple (4 to 10) copies of homologous chromosomes and plasmids which are postulated to exist in pairs that are aligned relative to one another (28) [
  30. Hansen M. T., J. Bacteriol. 134, 71 (1978); (10.1128/jb.134.1.71-75.1978) / J. Bacteriol. by Hansen M. T. (1978)
  31. Daly M. J. Minton K. W. 177 5505 (1995) ]. (10.1128/jb.177.19.5495-5505.1995)
  32. J. Lin data not shown.
  33. The systematic error associated with the mapmaking for the second chromosome for which complete sequence information is available from O. White was <0.2%. The contig was assembled from 100 molecules by means of the Gentig algorithm. The sizes (in kilobases) of the 91 Nhe I fragments were 5.3 18.9 47.2 23 28 18.4 30.8 40.8 132.5 3.8 16.4 29.9 39 13 61.8 34.4 50.9 45.6 11.5 12.5 17.8 22.9 19.5 3.6 4.2 3 28.8 6.4 27.7 9.6 15 26.9 6.2 15.6 20.2 7.5 118.1 11.3 92 15.7 30 23 94.2 34.1 8.8 18.9 8.1 20.1 1.9 87.5 13.5 79 9.8 93.2 58.8 3.1 10.5 5 2.9 8.6 29.1 6.4 16.1 26.3 28.7 17.7 4.4 18.4 8.4 17.1 42.5 30 64.1 47 17.3 27.7 46.1 5.1 65.6 46.2 18.2 14.4 37.9 35.7 33.3 23.2 2.6 28.8 13.4 37.5 and 50.5.
  34. A direct calculation for D. radiodurans indicates that about 110 genomic DNA molecules each of expected length 500 kb digested with a six-cutter enzyme with a digestion rate of 50% and a relative sizing error of 10% would overlap these molecules into one single island with ∼0.04% probability that a declared overlap in the computed contig is false.
  35. J. Lin and R. Qi data not shown. We mapped a series of probes developed from D. radiodurans sequences to the composite map by Southern blot analysis (J. Lin et al. data not shown). Genomic DNA fragments were prepared by Not I digestion in solution (tube) surface-mounted then optically mapped with Nhe I and overlapped with Gentig. The sizes (in kilobases) of the nine Not I fragments were 381 354 468 239 400 180 228 253 and 103. Any given sequence or probe was localized to a particular large Not I restriction fragment and to a Nhe I restriction fragment by Southern blotting. Probes were generated by the polymerase chain reaction from genomic DNA templates with primers designed from preliminary shotgun sequence information: recA (katA orf1 plsx) DNA polymerase and ribonuclease P. Results confirmed optical maps and preliminary sequence assemblies.
  36. Lioutas C., Schmetz C., Tannich E., Exp. Parasitol. 80, 349 (1995). (10.1006/expr.1995.1045) / Exp. Parasitol. by Lioutas C. (1995)
  37. M. J. Daly unpublished data.
  38. O. White et al. unpublished data.
  39. Daly M. J., Minton K. W., Gene 187, 225 (1997); (10.1016/S0378-1119(96)00755-X) / Gene by Daly M. J. (1997)
  40. ; J. Bacteriol. 177 5495 (1995). (10.1128/jb.177.19.5495-5505.1995)
  41. Kikuchi M., Kitayama S., Sjarief S. H., Watanabe H., Radiat. Res. 139, 123 (1994). (10.2307/3578742) / Radiat. Res. by Kikuchi M. (1994)
  42. 10.1126/science.270.5240.1318
  43. 10.1002/bies.950170514
  44. DNA was prepared from γ ray–irradiated cells (D 37 the dose yielding a 37% survival rate for plateau- phase wild type R1) using gel insert methodology. Agarose inserts were melted at 72°C diluted 500× in TE buffer [1 mM EDTA and 10 mM tris (pH 8.0)] and mounted for optical mapping. More than 10 000 irradiated DNA molecules were studied for the presence of circles or other aberrant structures.
  45. 10.1128/jb.178.15.4461-4471.1996
  46. J. Lin data not shown.
  47. B. B. Bederson et al. in Human Factors in Web Development L. Ratner E. Grose C. Forsythe Eds. (Erlbaum Mahwah NJ 1998) p. 255.
  48. J. Lin data not shown.
  49. ___ data not shown.
  50. We thank T. Burland for Geneplot software S. Paxia for Pad software (33) and F. Blattner for prepublication E. coli sequence. Partially funded by the U.S. Department of Energy and NIH by Department of Energy Office of Biological and Environmental Research grants DE-FG02-98ER62583 DE-FG02-97ER62492 DE-FG07-97ER20293 and DE-FG02-98ER62554 and by U.S. Public Health Service grants GM39933 and HG0025-08.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:37 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 5:06 a.m.)
Indexed 2 months ago (July 2, 2025, 12:35 p.m.)
Issued 26 years ago (Sept. 3, 1999)
Published 26 years ago (Sept. 3, 1999)
Published Print 26 years ago (Sept. 3, 1999)
Funders 0

None

@article{Lin_1999, title={Whole-Genome Shotgun Optical Mapping of Deinococcus radiodurans}, volume={285}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.285.5433.1558}, DOI={10.1126/science.285.5433.1558}, number={5433}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Lin, Jieyi and Qi, Rong and Aston, Christopher and Jing, Junping and Anantharaman, Thomas S. and Mishra, Bud and White, Owen and Daly, Michael J. and Minton, Kenneth W. and Venter, J. Craig and Schwartz, David C.}, year={1999}, month=sep, pages={1558–1562} }