Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

From comparative analyses of the nucleotide sequences of genes encoding ribosomal RNAs and several proteins, molecular phylogeneticists have constructed a “universal tree of life,” taking it as the basis for a “natural” hierarchical classification of all living things. Although confidence in some of the tree's early branches has recently been shaken, new approaches could still resolve many methodological uncertainties. More challenging is evidence that most archaeal and bacterial genomes (and the inferred ancestral eukaryotic nuclear genome) contain genes from multiple sources. If “chimerism” or “lateral gene transfer” cannot be dismissed as trivial in extent or limited to special categories of genes, then no hierarchical universal classification can be taken as natural. Molecular phylogeneticists will have failed to find the “true tree,” not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree. However, taxonomies based on molecular sequences will remain indispensable, and understanding of the evolutionary process will ultimately be enriched, not impoverished.

Bibliography

Doolittle, W. F. (1999). Phylogenetic Classification and the Universal Tree. Science, 284(5423), 2124–2128.

Authors 1
  1. W. Ford Doolittle (first)
References 73 Referenced 1,323
  1. E. Mayr The Growth of Biological Thought (Belknap Press Cambridge MA 1982).
  2. A. L. Panchen Classification Evolution and the Nature of Biology (Cambridge Univ. Press Cambridge 1992) (10.1017/CBO9780511565557)
  3. M. T. Ghiselin Metaphysics and the Origin of Species (State Univ. of New York Press Albany NY 1997).
  4. C. Darwin The Origin of Species by Means of Natural Selection (Murray London 1859). (10.5962/bhl.title.82303)
  5. E. Zuckerkandl and L. Pauling in Evolving Genes and Proteins V. Bryson and H. J. Vogel Eds. (Academic Press New York 1965) pp. 97–166; J. Theor. Biol. 8 357 (1965). (10.1016/B978-1-4832-2734-4.50017-6)
  6. 10.1073/pnas.87.12.4576
  7. Doolittle W. F., Brown J. R., ibid. 91, 6721 (1994); / ibid. by Doolittle W. F. (1994)
  8. ; R. F. Doolittle ibid. 92 2421 (1995); (10.1073/pnas.92.7.2421)
  9. 10.1126/science.276.5313.734
  10. 10.1126/science.202030
  11. 10.1128/mr.51.2.221-271.1987
  12. 10.1146/annurev.biochem.66.1.679
  13. Gogarten P. J., et al., Proc. Natl. Acad. Sci. U.S.A. 86, 6661 (1989); (10.1073/pnas.86.17.6661) / Proc. Natl. Acad. Sci. U.S.A. by Gogarten P. J. (1989)
  14. ; N. Iwabe K. Kuma M. Hasegawa S. Osawa T. Miyata ibid. p. 9355; J. R. Brown and W. F. Doolittle ibid. 92 2441 (1995); S. L. Baldauf J. D. Palmer W. F. Doolittle ibid. 93 7749 (1996);
  15. Lawson F. S., Charlebois R. L., Dillon J. A., Mol. Biol. Evol. 13, 970 (1996); (10.1093/oxfordjournals.molbev.a025665) / Mol. Biol. Evol. by Lawson F. S. (1996)
  16. . Organisms in all major groups bear genes encoding elongation factors EF-1α (EF-Tu) and EF-2 (bacterial EF-G). These homologous (more precisely paralogous) genes thus must be products of a gene duplication that had already occurred before the time of the last common ancestor of all organisms alive today. A tree made of EF-1α and EF-2 sequences should comprise two subtrees (one for each of these paralogs) each of which (barring LGT or artifacts) should have the topology of the true universal organismal tree. The point at which each subtree attaches to the other will be its root and will correspond to the last common organismal ancestor. Neither subtree is rootable without the other. Because rRNA genes all seem to be orthologous (derived from a single ancestral gene in the last common ancestor) such a rooting is not possible with rRNA sequences alone.
  17. M. J. Kates D. J. Kushner A. T. Matheson Eds. The Biochemistry of Archaea (Archaeobacteria) (Elsevier Science Amsterdam 1993)
  18. W. F. Doolittle in Evolution of Microbial Life D. M. Roberts P. Sharp G. Alderson M. Collins Eds. (Cambridge Univ. Press Cambridge 1996) pp. 1-21.
  19. 10.1016/S0092-8674(00)80284-6
  20. ; D. E. Edgell and W. F. Doolittle ibid. p. 995; J. N. Reeve K. Sandman C. J. Daniels ibid. p. 999; P. P. Dennis ibid. p. 1007;
  21. Soppa J., Mol. Microbiol. 31, 1295 (1997). (10.1046/j.1365-2958.1999.01273.x) / Mol. Microbiol. by Soppa J. (1997)
  22. Philippe H., Curr. Opin. Genet. Dev. 8, 616 (1998); (10.1016/S0959-437X(98)80028-2) / Curr. Opin. Genet. Dev. by Philippe H. (1998)
  23. ; H. Phillippe and A. Adoutte in Evolutionary Relationships Among Protozoa G. H. Coombs K. Vickerman M. A. Sleigh A. Warren Eds. (Systematics Association London 1998) pp. 25–26;
  24. 10.1093/oxfordjournals.molbev.a026105
  25. Prominent among sources of error or uncertainty in establishing branching patterns are mutational saturation “long-branch attraction ” and “among-site rate variation.” Mutationally saturated sequences are maximally diverged so that further changes are as likely to make them more similar as they are to make them more different and tree topology is based on noise. Long-branch attraction [
  26. 10.2307/2412923
  27. ] occurs when rates of sequence change differ substantially between taxa (even without saturation). Lineages with higher rates of sequence change artifactually associate with each other and with out-groups except with maximum likelihood methods. Even with these methods [
  28. Yang Z., J. Mol. Evol. 42, 294 (1996); (10.1007/BF02198856) / J. Mol. Evol. by Yang Z. (1996)
  29. ; Trends Ecol. Evol. 11 367 (1996)] long-branch attraction occurs when there is a substantial rate variation among different sites in a gene.
  30. 10.1073/pnas.96.2.580
  31. Stiller J. W., Duffield E. C., Hall B. D., ibid. 95, 11769 (1998). / ibid. by Stiller J. W. (1998)
  32. P. J. Gogarten E. Hilario L. Olenzenski in Evolution of Microbial Life D. M. Roberts P. Sharp G. Alderson M. Collins Eds. (Cambridge Univ. Press Cambridge 1996) pp. 267–292.
  33. Martin W., BioEssays 21, 99 (1999). (10.1002/(SICI)1521-1878(199902)21:2<99::AID-BIES3>3.0.CO;2-B) / BioEssays by Martin W. (1999)
  34. Cavalier-Smith T., Nature 326, 332 (1987); (10.1038/326332a0) / Nature by Cavalier-Smith T. (1987)
  35. ; Biol. Rev. Camb. Philos. Soc. 73 203 (1998). (10.1017/S0006323198005167)
  36. Vossbrinck C. R., et al., Nature 326, 411 (1987); (10.1038/326411a0) / Nature by Vossbrinck C. R. (1987)
  37. 10.1126/science.2911720
  38. Leipe D. D., Gunderson J. H., Nerad T. A., Sogin M. L., Mol. Biochem. Parasitol. 59, 41 (1993). (10.1016/0166-6851(93)90005-I) / Mol. Biochem. Parasitol. by Leipe D. D. (1993)
  39. Embley T. M., Hirt R. P., Curr. Opin. Genet. Dev. 8, 629 (1998); (10.1016/S0959-437X(98)80029-4) / Curr. Opin. Genet. Dev. by Embley T. M. (1998)
  40. Roger A. J., Sandblom O., Doolittle W. F., Philippe H., Mol. Biol. Evol. 16, 218 (1999); (10.1093/oxfordjournals.molbev.a026104) / Mol. Biol. Evol. by Roger A. J. (1999)
  41. Keeling P. J., McFadden G. I., Trends Microbiol. 6, 19 (1998). (10.1016/S0966-842X(97)01185-2) / Trends Microbiol. by Keeling P. J. (1998)
  42. Miyamoto M. M., Fitch W. M., Mol. Biol. Evol. 12, 513 (1995). / Mol. Biol. Evol. by Miyamoto M. M. (1995)
  43. Gray M. W., Burger G., Lang B. F., Science 283, 1476 (1999). (10.1126/science.283.5407.1476) / Science by Gray M. W. (1999)
  44. Brown J. R., Doolittle W. F., Microbiol. Mol. Biol. Rev. 61, 456 (1997); / Microbiol. Mol. Biol. Rev. by Brown J. R. (1997)
  45. 10.1073/pnas.94.24.13028
  46. Ragan M., Gaasterland T., J. Microb. Comp. Genomics 3, 219 (1998); (10.1089/omi.1.1998.3.219) / J. Microb. Comp. Genomics by Ragan M. (1998)
  47. 10.1073/pnas.95.11.6239
  48. 10.1016/S0168-9525(98)01494-2
  49. 10.1038/32096
  50. 10.1073/pnas.95.16.9413
  51. 10.1038/37052
  52. Doolittle W. F., Logsdon J. M., Curr. Biol. 8, R209 (1998); (10.1016/S0960-9822(98)70127-7) / Curr. Biol. by Doolittle W. F. (1998)
  53. Ibba M., Bono J. L., Rosa P. A., Soll D., Proc. Natl. Acad. Sci. U.S.A. 94, 14383 (1997). (10.1073/pnas.94.26.14383) / Proc. Natl. Acad. Sci. U.S.A. by Ibba M. (1997)
  54. 10.1073/pnas.96.7.3801
  55. Hilario E., Gogarten J. P., Biosystems 31, 111 (1993). (10.1016/0303-2647(93)90038-E) / Biosystems by Hilario E. (1993)
  56. Sonea S., Paniset M., Rev. Can. Biol. 35, 103 (1976); / Rev. Can. Biol. by Sonea S. (1976)
  57. ; D. C. Reanney in Aspects of Genetic Action and Evolution suppl. 8 of International Review of Cytology G. H. Bourne J. F. Danielli K. W. Jeon Eds. (Academic Press New York 1978) pp. 1–67.
  58. Cermakian N., et al., J. Mol. Evol. 46, 671 (1997). (10.1007/PL00006271) / J. Mol. Evol. by Cermakian N. (1997)
  59. S. A. Baldauf and W. F. Doolittle in preparation.
  60. D. M. O'Neil
  61. Baron L., Sypherd P., J. Bacteriol. 99, 242 (1969). (10.1128/jb.99.1.242-247.1969) / J. Bacteriol. by Baron L. (1969)
  62. Doolittle R. F., Handy J. F., Curr. Opin. Genet. Dev. 8, 630 (1998). (10.1016/S0959-437X(98)80030-0) / Curr. Opin. Genet. Dev. by Doolittle R. F. (1998)
  63. Nomura M., Proc. Natl. Acad. Sci. U.S.A. 96, 1820 (1999). (10.1073/pnas.96.5.1820) / Proc. Natl. Acad. Sci. U.S.A. by Nomura M. (1999)
  64. ___, Traub P., Bechmann H., Nature 219, 793 (1968). / Nature by ___ (1968)
  65. 10.1126/science.6163215
  66. Asai T., Zaprojets D., Squires C., Squires C. L., Proc. Natl. Acad. Sci. U.S.A. 96, 1971 (1999). (10.1073/pnas.96.5.1971) / Proc. Natl. Acad. Sci. U.S.A. by Asai T. (1999)
  67. Gupta R. S., Microbiol. Mol. Biol. Rev. 62, 1435 (1998). (10.1128/MMBR.62.4.1435-1491.1998) / Microbiol. Mol. Biol. Rev. by Gupta R. S. (1998)
  68. Brown J. R., Zhang J., Hodgson J. E., Curr. Biol. 8, R365 (1998). (10.1016/S0960-9822(98)70238-6) / Curr. Biol. by Brown J. R. (1998)
  69. Ueda K., Kido Y., Yoshida T., Kataoka M., J. Bacteriol. 181, 78 (1999). (10.1128/JB.181.1.78-82.1999) / J. Bacteriol. by Ueda K. (1999)
  70. Woese C. R., Proc. Natl. Acad. Sci. U.S.A. 95, 6854 (1998). (10.1073/pnas.95.12.6854) / Proc. Natl. Acad. Sci. U.S.A. by Woese C. R. (1998)
  71. J. Xiong K. Inoue C. C. Bauer ibid. p. 14851.
  72. 10.1016/S0168-9525(98)01553-4
  73. I thank J. Logsdon A. Roger D. Faguy O. Feeley and Y. Inagaki for critical discussions and the Medical Research Council of Canada and the Canadian Institute for Advanced Research for support. I am indebted to J. P. Gogarten and W. Martin for persuading me of the importance of LGT.
Dates
Type When
Created 23 years ago (July 27, 2002, 5:42 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 4:40 a.m.)
Indexed 4 days, 8 hours ago (Aug. 22, 2025, 12:45 a.m.)
Issued 26 years, 2 months ago (June 25, 1999)
Published 26 years, 2 months ago (June 25, 1999)
Published Print 26 years, 2 months ago (June 25, 1999)
Funders 0

None