10.1126/science.284.5418.1340
Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical–based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.

Bibliography

Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., De Rossi, D., Rinzler, A. G., Jaschinski, O., Roth, S., & Kertesz, M. (1999). Carbon Nanotube Actuators. Science, 284(5418), 1340–1344.

Authors 13
  1. Ray H. Baughman (first)
  2. Changxing Cui (additional)
  3. Anvar A. Zakhidov (additional)
  4. Zafar Iqbal (additional)
  5. Joseph N. Barisci (additional)
  6. Geoff M. Spinks (additional)
  7. Gordon G. Wallace (additional)
  8. Alberto Mazzoldi (additional)
  9. Danilo De Rossi (additional)
  10. Andrew G. Rinzler (additional)
  11. Oliver Jaschinski (additional)
  12. Siegmar Roth (additional)
  13. Miklos Kertesz (additional)
References 38 Referenced 2,209
  1. R. H. Baughman L. W. Shacklette R. L. Elsenbaumer E. J. Plichta C. Becht in Conjugated Polymeric Materials: Opportunities in Electronics Optoelectronics and Molecular Electronics J. L. Bredas and R. R. Chance Eds. vol. 182 of NATO ASI Series E: Applied Sciences (Kluwer Dordrecht Netherlands 1990) pp. 559–582; (10.1007/978-94-009-2041-5_44)
  2. 10.1016/0379-6779(96)80158-5
  3. 10.1126/science.268.5218.1735
  4. Otero T. F., Sansinena J. M., Adv. Mater. 10, 491 (1998); (10.1002/(SICI)1521-4095(199804)10:6<491::AID-ADMA491>3.0.CO;2-Q) / Adv. Mater. by Otero T. F. (1998)
  5. 10.1088/0964-1726/6/1/003
  6. 10.1016/0379-6779(95)80022-0
  7. ; J. D. Madden P. G. Madden I. W. Hunter S. R. Lafontaine C. J. Brenan in Proceedings—Workshop on Working in the Micro-World IEEE IROS96 Osaka Japan November 1996 (IEEE New York 1996) pp. 9–18.
  8. Kaneto K., Kaneko M., Min Y., MacDiarmid A. G., Synth. Met. 71, 2211 (1995). (10.1016/0379-6779(94)03226-V) / Synth. Met. by Kaneto K. (1995)
  9. 10.1126/science.280.5367.1253
  10. 10.1007/s003390050734
  11. Pietronero L., Strässler S., Phys. Rev. Lett. 47, 593 (1981); (10.1103/PhysRevLett.47.593) / Phys. Rev. Lett. by Pietronero L. (1981)
  12. Kertesz M., Mol. Cryst. Liq. Cryst. 126, 103 (1985); (10.1080/15421408508084159) / Mol. Cryst. Liq. Cryst. by Kertesz M. (1985)
  13. Chan C. T., Kamitakahara W. A., Ho K. M., Eklund P. C., Phys. Rev. Lett. 58, 1528 (1987); (10.1103/PhysRevLett.58.1528) / Phys. Rev. Lett. by Chan C. T. (1987)
  14. Baughman R. H., Murthy N. S., Eckhardt H., Kertesz M., Phys. Rev. B 46, 10515 (1992). (10.1103/PhysRevB.46.10515) / Phys. Rev. B by Baughman R. H. (1992)
  15. Nixon D. E., Perry G. S., J. Phys. C Solid State Phys. 2, 1732 (1969); (10.1088/0022-3719/2/10/305) / J. Phys. C Solid State Phys. by Nixon D. E. (1969)
  16. Murakami Y., Kishimoto T., Suematsu H., J. Phys. Soc. Jpn. 59, 571 (1990); (10.1143/JPSJ.59.571) / J. Phys. Soc. Jpn. by Murakami Y. (1990)
  17. Fisher J. E., Kim H. J., Cajipe V. B., Phys. Rev. B 36, 4449 (1987); (10.1103/PhysRevB.36.4449) / Phys. Rev. B by Fisher J. E. (1987)
  18. Kamitakahara W. A., Zaresky J. L., Eklund P. C., Synth. Met. 12, 301 (1985); (10.1016/0379-6779(85)90126-2) / Synth. Met. by Kamitakahara W. A. (1985)
  19. Baron F., Flandrois S., Hauw C., Gaultier J., Solid State Commun. 42, 759 (1982); (10.1016/0038-1098(82)90001-1) / Solid State Commun. by Baron F. (1982)
  20. Flandrois S., Hauw C., Mathur R. B., Synth. Met. 34, 399 (1990). (10.1016/0379-6779(89)90415-3) / Synth. Met. by Flandrois S. (1990)
  21. Spudich J. A., Nature 372, 515 (1994). (10.1038/372515a0) / Nature by Spudich J. A. (1994)
  22. Wong E. W., Sheehan P. E., Leber C. M., Science 273, 1971 (1997); (10.1126/science.277.5334.1971) / Science by Wong E. W. (1997)
  23. Falvo M. R., et al., Nature 389, 582 (1997). (10.1038/39282) / Nature by Falvo M. R. (1997)
  24. The SWNTs were commercially obtained as an aqueous suspension from Tubes@Rice (Rice Univ. Houston TX). The nanotube sheets were typically made by vacuum filtration of ∼20 ml of a ∼0.6 mg/ml nanotube suspension through a poly(tetrafluoroethylene) filter (Millipore LS 47 mm in diameter 5-μm pores). The nanotube sheet (formed over the clear funnel area which was 37 mm in diameter) was washed with ∼200 ml of deionized water and then 100 ml of methanol to remove residual NaOH and surfactant respectively. These sheets were allowed to dry under continued vacuum purge for ∼1 hour before being peeled from the filter. The typical nanotube sheet was between 15 and 35 μm thick and weighed ∼12 mg providing a bulk density of 0.3 to 0.4 g/cm 3 and a four-point probe electrical conductivity of ∼5000 S/cm.
  25. 10.1126/science.273.5274.483
  26. Ye Y., et al., Appl. Phys. Lett. 74, 2307 (1999). (10.1063/1.123833) / Appl. Phys. Lett. by Ye Y. (1999)
  27. Radin J.-P., Yeager E., Electroanal. Chem. Interfacial Electrochem. 36, 257 (1972); (10.1016/S0022-0728(72)80249-3) / Electroanal. Chem. Interfacial Electrochem. by Radin J.-P. (1972)
  28. Gerischer H., McIntyre R., Scherson D., Storck W., J. Phys. Chem. 91, 1930 (1987); (10.1021/j100291a049) / J. Phys. Chem. by Gerischer H. (1987)
  29. Oren Y., Glatt I., Livnat A., Kafri O., Soffer A., J. Electroanal. Chem. 187, 59 (1985). (10.1016/0368-1874(85)85575-1) / J. Electroanal. Chem. by Oren Y. (1985)
  30. Rao A. M., Eklund P. C., Bandow S., Thess A., Smalley R. E., Nature 388, 257 (1997). (10.1038/40827) / Nature by Rao A. M. (1997)
  31. R. H. Baughman et al. unpublished data.
  32. 10.1088/0957-4484/9/3/007
  33. 10.1038/381678a0
  34. 10.1126/science.277.5334.1971
  35. 10.1126/science.280.5372.2101
  36. K. Uchino Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Boston 1997). (10.1007/978-1-4613-1463-9)
  37. Forster R. J., Chem. Soc. Rev. 23, 289 (1994). (10.1039/cs9942300289) / Chem. Soc. Rev. by Forster R. J. (1994)
  38. We thank J. Su W. Kuhn V. Z. Vardeny L. Dalton R. Duran L. Grigorian and P. C. Eklund for discussions and other valuable contributions. Partially supported by Defense Advanced Research Projects Agency grant N00173-99-2000.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:49 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 4:27 a.m.)
Indexed 1 week ago (Aug. 31, 2025, 6:36 a.m.)
Issued 26 years, 3 months ago (May 21, 1999)
Published 26 years, 3 months ago (May 21, 1999)
Published Print 26 years, 3 months ago (May 21, 1999)
Funders 0

None

@article{Baughman_1999, title={Carbon Nanotube Actuators}, volume={284}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.284.5418.1340}, DOI={10.1126/science.284.5418.1340}, number={5418}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Baughman, Ray H. and Cui, Changxing and Zakhidov, Anvar A. and Iqbal, Zafar and Barisci, Joseph N. and Spinks, Geoff M. and Wallace, Gordon G. and Mazzoldi, Alberto and De Rossi, Danilo and Rinzler, Andrew G. and Jaschinski, Oliver and Roth, Siegmar and Kertesz, Miklos}, year={1999}, month=may, pages={1340–1344} }