Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.

Bibliography

Shtilerman, M., Lorimer, G. H., & Walter Englander, S. (1999). Chaperonin Function: Folding by Forced Unfolding. Science, 284(5415), 822–825.

Authors 3 University of Pennsylvania
  1. Mark Shtilerman (first) University of Pennsylvania
  2. George H. Lorimer (additional)
  3. S. Walter Englander (additional) University of Pennsylvania
References 80 Referenced 247
  1. Fenton W. A., Horwich A. L., Protein Sci. 6, 743 (1997); (10.1002/pro.5560060401) / Protein Sci. by Fenton W. A. (1997)
  2. ; J. E. Coyle J. Jaeger M. Groβ
  3. Robinson C. V., Radford S. E., Folding Des. 2, R93 (1997) ; (10.1016/S1359-0278(97)00046-1) / Folding Des. by Robinson C. V. (1997)
  4. Braig K., Curr. Opin. Struct. Biol. 8, 159 (1998). (10.1016/S0959-440X(98)80033-X) / Curr. Opin. Struct. Biol. by Braig K. (1998)
  5. Sigler P. B., et al., Annu. Rev. Biochem. 67, 581 (1998). (10.1146/annurev.biochem.67.1.581) / Annu. Rev. Biochem. by Sigler P. B. (1998)
  6. Fenton W. A., Kashi Y., Furtak K., Horwich A. L., Nature 371, 614 (1994); (10.1038/371614a0) / Nature by Fenton W. A. (1994)
  7. ; K. Braig et al. ibid. p. 578.
  8. 10.1016/S0092-8674(00)81342-2
  9. 10.1038/41944
  10. Weissman J. S., et al., Cell 83, 577 (1995); (10.1016/0092-8674(95)90098-5) / Cell by Weissman J. S. (1995)
  11. Weissman J. S., Rye H. S., Fenton W. A., Horwich A. L., ibid. 84, 481 (1996). / ibid. by Weissman J. S. (1996)
  12. Rye H. S., et al., Nature 388, 792 (1997). (10.1038/42047) / Nature by Rye H. S. (1997)
  13. Mayhew M., et al., ibid. 379, 420 (1996). / ibid. by Mayhew M. (1996)
  14. Sparrer H., Rutkat K., Buchner J., Proc. Natl. Acad. Sci. U.S.A. 94, 1096 (1997); (10.1073/pnas.94.4.1096) / Proc. Natl. Acad. Sci. U.S.A. by Sparrer H. (1997)
  15. Llorca O., Marco S., Carrascosa J. L., Valpuesta J. M., FEBS Lett. 405, 195 (1997). (10.1016/S0014-5793(97)00186-5) / FEBS Lett. by Llorca O. (1997)
  16. Ellis R. J., Hartl F. U., FASEB J. 10, 20 (1996). (10.1096/fasebj.10.1.8566542) / FASEB J. by Ellis R. J. (1996)
  17. Todd M. J., Viitanen P. V., Lorimer G. H., Science 265, 659 (1994); (10.1126/science.7913555) / Science by Todd M. J. (1994)
  18. Weissman J. S., Kashi Y., Fenton W. A., Horwich A. L., Cell 78, 693 (1994); (10.1016/0092-8674(94)90533-9) / Cell by Weissman J. S. (1994)
  19. Smith K. R., Fisher M. T., J. Biol. Chem. 270, 21517 (1995); (10.1074/jbc.270.37.21517) / J. Biol. Chem. by Smith K. R. (1995)
  20. Taguchi H., Yoshida M., FEBS Lett. 359, 195 (1995); (10.1016/0014-5793(95)00041-7) / FEBS Lett. by Taguchi H. (1995)
  21. Burston S. G., Weissman J. S., Farr G. W., Fenton W. A., Horwich A. L., Nature 383, 96 (1996); (10.1038/383096a0) / Nature by Burston S. G. (1996)
  22. Sparrer H., Lilie H., Buchner J., J. Mol. Biol. 258, 74 (1996); (10.1006/jmbi.1996.0235) / J. Mol. Biol. by Sparrer H. (1996)
  23. Ranson N. A., Burston S. G., Clarke A. R., ibid. 266, 656 (1997). / ibid. by Ranson N. A. (1997)
  24. Todd M. J., Lorimer G. H., Thirumalai D., Proc. Natl. Acad. Sci. U.S.A. 93, 4030 (1996); (10.1073/pnas.93.9.4030) / Proc. Natl. Acad. Sci. U.S.A. by Todd M. J. (1996)
  25. ; F. J. Corrales and A. R. Fersht ibid. p. 4509.
  26. Sosnick T. R., Mayne L., Hiller R., Englander S. W., Nature Struct. Biol. 1, 149 (1994). (10.1038/nsb0394-149) / Nature Struct. Biol. by Sosnick T. R. (1994)
  27. D. Thirumalai in Statistical Mechanics S. Doniach Ed. (Plenum New York 1994) pp. 15–134;
  28. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G., Proteins Struct. Funct. Genet. 21, 167 (1995); (10.1002/prot.340210302) / Proteins Struct. Funct. Genet. by Bryngelson J. D. (1995)
  29. ; K. A. Dill et al. Protein Sci. 4 561 (1995); (10.1002/pro.5560040401)
  30. Guo Z. Y., Thirumalai D., Biopolymers 36, 83 (1995) . (10.1002/bip.360360108) / Biopolymers by Guo Z. Y. (1995)
  31. 10.1038/358302a0
  32. ; P. A. Jennings P. A. Finn
  33. Jones B. E., Matthews C. R., Biochemistry 32, 3783 (1993); (10.1021/bi00065a034) / Biochemistry by Jones B. E. (1993)
  34. Kiefhaber T., Proc. Natl. Acad. Sci. U.S.A. 92, 9029 (1995); (10.1073/pnas.92.20.9029) / Proc. Natl. Acad. Sci. U.S.A. by Kiefhaber T. (1995)
  35. Konermann L., Collings B. A., Douglas D. G., Biochemistry 36, 5554 (1997); (10.1021/bi970046d) / Biochemistry by Konermann L. (1997)
  36. Matagne A., Radford S. E., Dobson C. M., J. Mol. Biol. 267, 1068 (1997); (10.1006/jmbi.1997.0963) / J. Mol. Biol. by Matagne A. (1997)
  37. Wildegger G., Kiefhaber T., ibid. 270, 294 (1997); / ibid. by Wildegger G. (1997)
  38. ; B. Hammack S. Godbole B. E. Bowler ibid. 275 719 (1998); (10.1006/jmbi.1997.1493)
  39. Freund C., Gehring P., Baici A., Holtak T. A., Plückthun A., Folding Des. 3, 39 (1998); (10.1016/S1359-0278(98)00007-8) / Folding Des. by Freund C. (1998)
  40. Shastry M. C. R., Udgaonkar J. B., J. Mol. Biol. 247, 1013 (1998); (10.1006/jmbi.1994.0196) / J. Mol. Biol. by Shastry M. C. R. (1998)
  41. Burton R. E., Myers J. K., Oas T. G., Biochemistry 37, 5337 (1998). (10.1021/bi980245c) / Biochemistry by Burton R. E. (1998)
  42. Kirkpatrick S., Gelatt C. D., Vecchi M. P., Science 220, 671 (1983). (10.1126/science.220.4598.671) / Science by Kirkpatrick S. (1983)
  43. Zahn R., Spitzfaden C., Ottiger M., Wuthrich K., Pluckthun A., Nature 368, 261 (1994); (10.1038/368261a0) / Nature by Zahn R. (1994)
  44. Zahn R., Perrett S., Fersht A. R., J. Mol. Biol. 261, 43 (1996). (10.1006/jmbi.1996.0440) / J. Mol. Biol. by Zahn R. (1996)
  45. Okazaki A., Ikura T., Nikaido K., Kuwajima K., Nature Struct. Biol. 1, 4396 (1994). / Nature Struct. Biol. by Okazaki A. (1994)
  46. Goldberg M. S., et al., Proc. Natl. Acad. Sci. U.S.A. 94, 1080 (1997). (10.1073/pnas.94.4.1080) / Proc. Natl. Acad. Sci. U.S.A. by Goldberg M. S. (1997)
  47. Gervasoni P., Gehrig P., Pluckthun A., J. Mol. Biol. 275, 663 (1998). (10.1006/jmbi.1997.1481) / J. Mol. Biol. by Gervasoni P. (1998)
  48. Gross M., Robinson C. V., Mayhew M., Hartl F. U., Radford S. E., Protein Sci. 5, 2506 (1996). (10.1002/pro.5560051213) / Protein Sci. by Gross M. (1996)
  49. Englander S. W., Kallenbach N. R., Q. Rev. Biophys. 16, 521 (1984); (10.1017/S0033583500005217) / Q. Rev. Biophys. by Englander S. W. (1984)
  50. Englander S. W., Mayne L., Annu. Rev. Biophys. Biomol. Struct. 21, 243 (1992); (10.1146/annurev.bb.21.060192.001331) / Annu. Rev. Biophys. Biomol. Struct. by Englander S. W. (1992)
  51. Bai Y., Milne J. S., Mayne L., Englander S. W., Proteins Struct. Funct. Genet. 17, 75 (1993); (10.1002/prot.340170110) / Proteins Struct. Funct. Genet. by Bai Y. (1993)
  52. ; G. P. Connelly Y. Bai.
  53. Jeng M.-F., Mayne L., Englander S. W., ibid. 17, 87 (1993); / ibid. by Jeng M.-F. (1993)
  54. Englander S. W., Sosnick T. R., Englander J. J., Mayne L., Curr. Opin. Struct. Biol. 6, 18 (1996). (10.1016/S0959-440X(96)80090-X) / Curr. Opin. Struct. Biol. by Englander S. W. (1996)
  55. van der Vies S. M., Viitanen P. V., Gatenby A. A., Lorimer G. H., Jaenicke R., Biochemistry 31, 3635 (1992); (10.1021/bi00129a012) / Biochemistry by van der Vies S. M. (1992)
  56. Schmidt M., Buchner J., Todd M. J., Lorimer G. H., Viitanen P. V., J. Biol. Chem. 269, 10304 (1994). (10.1016/S0021-9258(17)34061-9) / J. Biol. Chem. by Schmidt M. (1994)
  57. 10.1038/342884a0
  58. Schneider G., Lindqvist Y., Lundqvist T., J. Mol. Biol. 211, 989 (1990). (10.1016/0022-2836(90)90088-4) / J. Mol. Biol. by Schneider G. (1990)
  59. Viitanen P. V., et al., Biochemistry 29, 5665 (1990). (10.1021/bi00476a003) / Biochemistry by Viitanen P. V. (1990)
  60. Walter S., Lorimer G. H., Schmid F. X., Proc. Natl. Acad. Sci. U.S.A. 93, 9425 (1996). (10.1073/pnas.93.18.9425) / Proc. Natl. Acad. Sci. U.S.A. by Walter S. (1996)
  61. Clark A. C., Frieden C., J. Mol. Biol. 285, 1777 (1999). (10.1006/jmbi.1998.2403) / J. Mol. Biol. by Clark A. C. (1999)
  62. Zahn R., Perrett S., Stenberg G., Fersht A. R., Science 271, 642 (1996). (10.1126/science.271.5249.642) / Science by Zahn R. (1996)
  63. Bai Y., Sosnick T. R., Mayne L., Englander S. W., ibid. 269, 192 (1995); / ibid. by Bai Y. (1995)
  64. Chamberlain A. K., Handel T. M., Marqusee S., Nature Struct. Biol. 3, 782 (1996); (10.1038/nsb0996-782) / Nature Struct. Biol. by Chamberlain A. K. (1996)
  65. Hiller R., Zhou Z. H., Adams M. W. W., Englander S. W., Proc. Natl. Acad. Sci. U.S.A. 94, 11329 (1997); (10.1073/pnas.94.21.11329) / Proc. Natl. Acad. Sci. U.S.A. by Hiller R. (1997)
  66. Fuentes E. J., Wand A. J., Biochemistry 37, 3687 (1998). (10.1021/bi972579s) / Biochemistry by Fuentes E. J. (1998)
  67. Z. Xu and P. B. Sigler personal communication.
  68. Lorimer G. H., Nature 388, 720 (1997). (10.1038/41892) / Nature by Lorimer G. H. (1997)
  69. Buckle A. M., Zahn R., Fersht A. R., Proc. Natl. Acad. Sci. U.S.A. 94, 3571 (1997). (10.1073/pnas.94.8.3571) / Proc. Natl. Acad. Sci. U.S.A. by Buckle A. M. (1997)
  70. 10.1126/science.276.5315.1109
  71. ; M. S. Z. Kellermayer S. B. Smith H. L. Ganzier C. Bustamante ibid. p. 1112.
  72. 10.1038/385833a0
  73. Groll M., et al., ibid. 386, 463 (1997); / ibid. by Groll M. (1997)
  74. Ditsel L., et al., Cell 93, 125 (1998). (10.1016/S0092-8674(00)81152-6) / Cell by Ditsel L. (1998)
  75. Unfolded RuBisCO [5 M urea 10 mM HCl 1 mM dithiothreitol (DTT pH 2] was initially labeled to hydrogen exchange equilibrium in tritiated water (∼10 mCi/ml). To begin the exchange of hydrogen we diluted RuBisCO (1:20) into conditions that do not permit folding (20 mM tris buffer pH 8.0 2 mM magnesium acetate 2 mM potassium acetate 1 mM DTT 0.01% Tween-20 22° ± 2°C RuBisCO at 2 μM) with or without a small excess of GroEL 14 . Free solvent tritium was immediately removed by centrifuging the RuBisCO solution through a Sephadex G-25 spin column [<1 min 0.5 ml through a 1 cm x 5 cm column (37)] equilibrated with the nonpermissive refolding buffer. After hydrogen exchange for the desired time free tritium was removed by a second spin column. The tritium label remaining bound was counted by liquid scintillation and computed in terms of the number of hydrogens per RuBisCO molecule not yet exchanged. For this calculation 100% recovery of the known initial RuBisCO was assumed. Control experiments showed that GroEL does not account for any of the bound label; therefore the analysis does not require the separation of GroEL from the labeled substrate protein. To avoid tritium contamination of samples it is necessary to remove the initial free tritium (∼10 10 cpm/ml) by a large factor (∼10 8 ) and it is advisable to spatially separate experimental operations to avoid minuscule splash and volatility problems which accounts for the data spread seen in our early data. In the absence of tritium contamination accuracy is at the level of a few percent. RuBisCO was prepared as described before (38). GroEL and GroES were overexpressed in E. coli and purified as described before (39). Protein concentration was measured spectrophotometrically at 280 nm using extinction coefficients of 9600 M −1 cm −1 per GroEL monomer 1200 M −1 cm −1 per GroES monomer (calculated from sequence) and 67 100 M −1 cm −1 for RuBisCO (38). GroEL and GroES concentrations were confirmed by quantitative amino acid analysis.
  76. Jeng M. F., Englander S. W., J. Mol. Biol. 221, 1045 (1991). (10.1016/0022-2836(91)80191-V) / J. Mol. Biol. by Jeng M. F. (1991)
  77. Schloss J. V., et al., Methods Enzymol. 90, 522 (1984); (10.1016/S0076-6879(82)90179-3) / Methods Enzymol. by Schloss J. V. (1984)
  78. Pierce J., Gutteridge S., Appl. Environ. Microbiol. 49, 1094 (1986). (10.1128/aem.49.5.1094-1100.1985) / Appl. Environ. Microbiol. by Pierce J. (1986)
  79. Clark A. C., Ramanathan R., Frieden C., Methods Enzymol. 290, 100 (1998). (10.1016/S0076-6879(98)90010-6) / Methods Enzymol. by Clark A. C. (1998)
  80. We thank Z. Xu and P. B. Sigler for Fig. 1 and A. Horwich and C. Frieden for helpful discussion and information. Supported by NIH grant GM31847 to S.W.E.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:49 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 4:21 a.m.)
Indexed 1 month, 3 weeks ago (July 4, 2025, 7:47 a.m.)
Issued 26 years, 4 months ago (April 30, 1999)
Published 26 years, 4 months ago (April 30, 1999)
Published Print 26 years, 4 months ago (April 30, 1999)
Funders 0

None

@article{Shtilerman_1999, title={Chaperonin Function: Folding by Forced Unfolding}, volume={284}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.284.5415.822}, DOI={10.1126/science.284.5415.822}, number={5415}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Shtilerman, Mark and Lorimer, George H. and Walter Englander, S.}, year={1999}, month=apr, pages={822–825} }