10.1126/science.284.5412.293
Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Single-crystal films are essential for devices because the intrinsic properties of the material, rather than its grain boundaries, can be exploited. Cubic bismuth oxide has the highest known oxide ion mobility, which makes it useful for fuel cells and sensors, but it is normally only stable from 729° to 825°C. The material has not been previously observed at room temperature. Single-crystal films of the high-temperature cubic polymorph of bismuth oxide were epitaxially electrodeposited from an aqueous solution onto single-crystal gold substrates. The 35.4 percent lattice mismatch was accommodated by forming coincidence lattices in which the bismuth oxide film was rotated in relation to the gold substrate. These results provide a method for producing other nonequilibrium phases that cannot be accessed by traditional thermal processing.

Bibliography

Switzer, J. A., Shumsky, M. G., & Bohannan, E. W. (1999). Electrodeposited Ceramic Single Crystals. Science, 284(5412), 293–296.

Authors 3
  1. Jay A. Switzer (first)
  2. Mark G. Shumsky (additional)
  3. Eric W. Bohannan (additional)
References 25 Referenced 182
  1. 10.1126/science.247.4941.444
  2. Switzer J. A., Raffaelle R. P., Phillips R. J., Hung C.-J., Golden T. D., ibid. 258, 1918 (1992). / ibid. by Switzer J. A. (1992)
  3. J. A. Switzer et al. ibid. 264 1573 (1994). (10.1126/science.264.5165.1573)
  4. Phillips R. J., Golden T. D., Shumsky M. G., Bohannan E. W., Switzer J. A., Chem. Mater. 9, 1670 (1997). (10.1021/cm970074i) / Chem. Mater. by Phillips R. J. (1997)
  5. Switzer J. A., et al., J. Am. Chem. Soc. 120, 3530 (1998). (10.1021/ja974366w) / J. Am. Chem. Soc. by Switzer J. A. (1998)
  6. Switzer J. A., Maune B. M., Raub E. R., Bohannan E. W., J. Phys. Chem. B 103, 395 (1999). (10.1021/jp983911s) / J. Phys. Chem. B by Switzer J. A. (1999)
  7. Shuk P., Wiemhöfer H.-D., Guth U., Göpel W., Greenblatt M., Solid State Ionics 89, 179 (1996). (10.1016/0167-2738(96)00348-7) / Solid State Ionics by Shuk P. (1996)
  8. Azad A. M., Larose S., Akbar S. A., J. Mater. Sci. 29, 4135 (1994). (10.1007/BF00414192) / J. Mater. Sci. by Azad A. M. (1994)
  9. For a compilation of work on UPD metals on single- crystal surfaces see E. Budevski G. Staikov W. J. Lorenz Electrochemical Phase Formation and Growth: An Introduction to the Initial Stages of Metal Deposition (Wiley-VCH Weinheim Germany 1996) pp. 41–146; ibid. pp. 317–322.
  10. ___ ibid. pp. 201–260.
  11. Moffat T. P., J. Electrochem. Soc. 142, 3767 (1995). (10.1149/1.2048411) / J. Electrochem. Soc. by Moffat T. P. (1995)
  12. Lincot D., et al., Appl. Phys. Lett. 67, 2355 (1995). (10.1063/1.114343) / Appl. Phys. Lett. by Lincot D. (1995)
  13. Golan Y., Huchison J. L., Rubinstein I., Hodes G., Adv. Mater. 8, 631 (1996). (10.1002/adma.19960080804) / Adv. Mater. by Golan Y. (1996)
  14. Hsiao G. S., Anderson M. G., Gorer S., Harris D., Penner R. M., J. Am. Chem. Soc. 119, 1439 (1997). (10.1021/ja9630755) / J. Am. Chem. Soc. by Hsiao G. S. (1997)
  15. Harwig H. A., Z. Anorg. Allg. Chem. 444, 151 (1978). (10.1002/zaac.19784440118) / Z. Anorg. Allg. Chem. by Harwig H. A. (1978)
  16. Battle P. D., Catlow C. R. A., Drennan J., Murray A. D., J. Phys. C. Solid State Phys. 16, L561 (1983). (10.1088/0022-3719/16/17/003) / J. Phys. C. Solid State Phys. by Battle P. D. (1983)
  17. Koto K., Suda K., Ishizawa N., Maeda H., Solid State Ionics 72, 79 (1994). (10.1016/0167-2738(94)90128-7) / Solid State Ionics by Koto K. (1994)
  18. Depero L. E., Sangaletti L., J. Solid State Chem. 122, 439 (1996). (10.1006/jssc.1996.0139) / J. Solid State Chem. by Depero L. E. (1996)
  19. Switzer J. A., Ceram. Bull. 66, 1521 (1987). / Ceram. Bull. by Switzer J. A. (1987)
  20. Van Leeuwen R. A., Hung C.-J., Kammler D. R., Switzer J. A., J. Phys. Chem. 99, 15247 (1995). (10.1021/j100041a047) / J. Phys. Chem. by Van Leeuwen R. A. (1995)
  21. Breyfogle B. E., Hung C.-J., Shumsky M. G., Switzer J. A., J. Electrochem. Soc. 143, 2741 (1996). (10.1149/1.1837101) / J. Electrochem. Soc. by Breyfogle B. E. (1996)
  22. Golden T. D., et al., Chem. Mater. 8, 2499 (1996). (10.1021/cm9602095) / Chem. Mater. by Golden T. D. (1996)
  23. Switzer J. A., et al., J. Mater. Res. 13, 909 (1998). (10.1557/JMR.1998.0124) / J. Mater. Res. by Switzer J. A. (1998)
  24. We have shown (J. A. Switzer M. G. Shumsky E. W. Bohannan in preparation) in our laboratory that single-crystal films of cuprous oxide (Cu 2 O) can also be epitaxially electrodeposited onto single-crystal Au. In this case the lattice mismatch is only 4.4% and the Cu 2 O overlayer is not rotated in relation to the Au substrate.
  25. This work was supported by the Office of Naval Research grant N00014-96-1-0984 NSF grants CHE-9816484 and DMR-9704288 and the University of Missouri Research Board.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:40 a.m.)
Deposited 1 year, 7 months ago (Jan. 12, 2024, 10:46 p.m.)
Indexed 4 weeks, 2 days ago (Aug. 2, 2025, 12:23 a.m.)
Issued 26 years, 4 months ago (April 9, 1999)
Published 26 years, 4 months ago (April 9, 1999)
Published Print 26 years, 4 months ago (April 9, 1999)
Funders 0

None

@article{Switzer_1999, title={Electrodeposited Ceramic Single Crystals}, volume={284}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.284.5412.293}, DOI={10.1126/science.284.5412.293}, number={5412}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Switzer, Jay A. and Shumsky, Mark G. and Bohannan, Eric W.}, year={1999}, month=apr, pages={293–296} }