Abstract
It is thought that dislocations cannot surpass the sound barrier at the shear wave velocity because the energy spent in radiation has a singularity there. Atomistic simulations show that dislocations can move faster than the speed of sound if they are created as supersonic dislocations at a strong stress concentration and are subjected to high shear stresses. This behavior is important for the understanding of low-temperature deformation processes such as mechanical twinning and may be relevant for the dynamics of tectonic faults. The motion of the dislocations at a speed of 2 times the shear wave velocity can be understood from a linear elastic analysis, but many of the peculiarities of the supersonic dislocations are dominated by nonlinear effects that require a realistic atomistic description.
References
17
Referenced
257
- J. P. Hirth and J. Lothe Theory of Dislocations (Wiley New York 1982).
- Eshelby J. D., Proc. R. Soc. London A 62, 307 (1949). / Proc. R. Soc. London A by Eshelby J. D. (1949)
- J. Weertman in Mathematical Theory of Dislocations T. Mura Ed. (American Society of Mechanical Engineers New York 1969) pp. 178–202.
- F. R. N. Nabarro Theory of Crystal Dislocations (Oxford Univ. Press Oxford 1967).
- J. Weertman and J. R. Weertman in Dislocations in Solids F. R. N. Nabarro Ed. (North-Holland Amsterdam 1980) vol. 3 pp. 1–60.
- H. Gao Y. Huang P. Gumbsch A. J. Rosakis J. Mech. Phys. Solids in press.
- A. J. Rosakis D. Coker O. Samundrala Caltech SM Rep. 98-17 (California Institute of Technology Pasadena 1998).
-
Archuletta R. J., Bull. Seismol. Soc. Am. 72, 1927 (1982).
(
10.1785/BSSA07206A1927
) / Bull. Seismol. Soc. Am. by Archuletta R. J. (1982) -
Schiotz J., Jacobsen K. W., Nielsen O. H., Philos. Mag. Lett. 72, 245 (1995).
(
10.1080/09500839508242458
) / Philos. Mag. Lett. by Schiotz J. (1995) - Gumbsch P., Z. Metallkd. 87, 341 (1996). / Z. Metallkd. by Gumbsch P. (1996)
-
Finnis M. W., Sinclair J. E., Philos. Mag. A 50, 45 (1984).
(
10.1080/01418618408244210
) / Philos. Mag. A by Finnis M. W. (1984) - Ackland G. J., Thetford R., ibid. 56, 15 (1987). / ibid. by Ackland G. J. (1987)
-
J. Friedel Dislocations (Pergamon Oxford 1964).
(
10.1016/B978-0-08-013523-6.50011-9
) -
Rosakis P., Tsai H., Int. J. Solids Struct. 32, 2711 (1995).
(
10.1016/0020-7683(94)00293-6
) / Int. J. Solids Struct. by Rosakis P. (1995) - V. M. Finkel' I. N. Voronov A. M. Savel'Yev
- Yeliseyenko A. I., Fedorov V. A., Fiz. Met. Metalloved. 29, 1248 (1970). / Fiz. Met. Metalloved. by Yeliseyenko A. I. (1970)
- Inspiring discussions with R. Phillips Brown University on the nucleation of supersonic dislocations as well as his suggestion of the indenter geometry are gratefully acknowledged. H.G. would like to thank the Alexander von Humboldt foundation for financial support of his stay at the Max-Planck-Institut für Metallforschung in Stuttgart.
Dates
Type | When |
---|---|
Created | 23 years ago (July 27, 2002, 5:48 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 12, 2024, 10:06 p.m.) |
Indexed | 1 day, 22 hours ago (Aug. 19, 2025, 6:05 a.m.) |
Issued | 26 years, 6 months ago (Feb. 12, 1999) |
Published | 26 years, 6 months ago (Feb. 12, 1999) |
Published Print | 26 years, 6 months ago (Feb. 12, 1999) |
@article{Gumbsch_1999, title={Dislocations Faster than the Speed of Sound}, volume={283}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.283.5404.965}, DOI={10.1126/science.283.5404.965}, number={5404}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Gumbsch, Peter and Gao, Huajian}, year={1999}, month=feb, pages={965–968} }