Abstract
The synthesis of massive arrays of monodispersed carbon nanotubes that are self-oriented on patterned porous silicon and plain silicon substrates is reported. The approach involves chemical vapor deposition, catalytic particle size control by substrate design, nanotube positioning by patterning, and nanotube self-assembly for orientation. The mechanisms of nanotube growth and self-orientation are elucidated. The well-ordered nanotubes can be used as electron field emission arrays. Scaling up of the synthesis process should be entirely compatible with the existing semiconductor processes, and should allow the development of nanotube devices integrated into silicon technology.
References
31
Referenced
2,728
10.1126/science.281.5379.940
10.1038/384147a0
10.1021/ja9737735
-
Wong S., et al., Nature 394, 52 (1998).
(
10.1038/27873
) / Nature by Wong S. (1998) -
Dai H., et al., Appl. Phys. Lett. 73, 1508 (1998).
(
10.1063/1.122188
) / Appl. Phys. Lett. by Dai H. (1998) 10.1126/science.270.5239.1179
-
Collins P. G., Zettl A., Appl. Phys. Lett. 69, 1969 (1996).
(
10.1063/1.117638
) / Appl. Phys. Lett. by Collins P. G. (1996) - Wang Q., et al., ibid. 72, 2912 (1998). / ibid. by Wang Q. (1998)
-
Q. H. Wang et al. ibid. 70 3308 (1997).
(
10.1063/1.119146
) -
J.-M. Bonard et al. ibid. 73 918 (1998).
(
10.4065/73.9.918-a
) -
Saito Y., et al., Ultramicroscopy 73, 1 (1998).
(
10.1016/S0304-3991(97)00128-9
) / Ultramicroscopy by Saito Y. (1998) 10.1038/29954
-
Li W., et al., Science 274, 1701 (1996).
(
10.1126/science.274.5293.1701
) / Science by Li W. (1996) -
Pan Z., et al., Nature 394, 631 (1998).
(
10.1038/29206
) / Nature by Pan Z. (1998) - Terrones M., et al., ibid. 388, 52 (1997). / ibid. by Terrones M. (1997)
-
Terrones M., et al., Chem. Phys. Lett. 285, 299 (1998).
(
10.1016/S0009-2614(98)00093-1
) / Chem. Phys. Lett. by Terrones M. (1998) 10.1126/science.282.5391.1105
-
Canham L. T., Appl. Phys. Lett. 57, 1046 (1990).
(
10.1063/1.103561
) / Appl. Phys. Lett. by Canham L. T. (1990) -
Collins R. T., et al., Phys. Today 50, 24 (1997).
(
10.1063/1.881650
) / Phys. Today by Collins R. T. (1997) -
J.-C. Vial and J. Derrien Eds. Porous Silicon Science and Technology: Winter School Les Houches 1994 (Springer-Verlag Berlin 1994).
(
10.1007/978-3-662-03120-9
) -
Smith R. L., Collins S. D., J. Appl. Phys. 71, R1 (1992).
(
10.1063/1.350839
) / J. Appl. Phys. by Smith R. L. (1992) -
G. Che et al Nature 393 346 (1998).
(
10.1038/30694
) -
Kyotani T., et al., Chem. Mater. 8, 2109 (1996).
(
10.1021/cm960063+
) / Chem. Mater. by Kyotani T. (1996) 10.1126/science.265.5172.635
-
Baker R. T. K., Carbon 27, 315 (1989).
(
10.1016/0008-6223(89)90062-6
) / Carbon by Baker R. T. K. (1989) -
Tibbetts G. G., J Cryst. Growth 66, 632 (1984).
(
10.1016/0022-0248(84)90163-5
) / J Cryst. Growth by Tibbetts G. G. (1984) -
Kong J., et al., Chem. Phys. Lett. 292, 567 (1998).
(
10.1016/S0009-2614(98)00745-3
) / Chem. Phys. Lett. by Kong J. (1998) - We have grown regular arrays of oriented nanotube blocks on plain Si(100) substrates (we typically use B-doped p-type wafers resistivity 5 to 10 ohm·cm). The overall structures of the nanotube blocks are similar to those grown on porous silicon. However in contrast to porous silicon we often find many nanotube towers with aspect ratio ≥5 falling onto the surface. This indicates weaker interactions at the interfaces between the nanotubes and the flat silicon surface. Also the nanotubes appear to be less well aligned on plain silicon substrates than on the porous silicon. TEM studies show that the nanotubes synthesized on plain silicon substrates have larger diameters and broader diameter distributions than those on porous silicon.
- The growth rate seems to be linear initially and tends to level off at longer time reactions (S. Fan M. Chapline N. Franklin H. Dai unpublished data).
10.1126/science.281.5377.632
- S.F. is on leave from the Department of Physics Tsinghua University Beijing China. We thank C. Quate and H. Soh for helpful discussions. Supported by NSF a Camille and Henry Dreyfus New Faculty Award the American Chemical Society–Petroleum Research Fund and the Center for Materials Research at Stanford University.
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 27, 2002, 5:40 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 12, 2024, 9:52 p.m.) |
Indexed | 1 day, 4 hours ago (Aug. 26, 2025, 2:36 a.m.) |
Issued | 26 years, 7 months ago (Jan. 22, 1999) |
Published | 26 years, 7 months ago (Jan. 22, 1999) |
Published Print | 26 years, 7 months ago (Jan. 22, 1999) |
@article{Fan_1999, title={Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties}, volume={283}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.283.5401.512}, DOI={10.1126/science.283.5401.512}, number={5401}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Fan, Shoushan and Chapline, Michael G. and Franklin, Nathan R. and Tombler, Thomas W. and Cassell, Alan M. and Dai, Hongjie}, year={1999}, month=jan, pages={512–514} }