Abstract
Recent findings now allow the development of an integrated model of the thermodynamic, kinetic, and structural properties of the transcription complex in the elongation, termination, and editing phases of transcript formation. This model provides an operational framework for placing known facts and can be extended and modified to incorporate new advances. The most complete information about transcriptional mechanisms and their control continues to come from the Escherichia coli system, upon which most of the explicit descriptions provided here are based. The transcriptional machinery of higher organisms, despite its greater inherent complexity, appears to use many of the same general principles. Thus, the lessons of E. coli continue to be relevant.
References
79
Referenced
194
- S. L. McKnight and K. R. Yamamoto Transcriptional Regulation (Cold Spring Harbor Laboratory Press Cold Spring Harbor NY 1992).
-
Herschlag D., Johnson F. B., Genes Dev. 7, 173 (1993);
(
10.1101/gad.7.2.173
) / Genes Dev. by Herschlag D. (1993) -
Rippe K., von Hippel P. H., Langowski J., Trends Biochem. Sci. 20, 500 (1995).
(
10.1016/S0968-0004(00)89117-3
) / Trends Biochem. Sci. by Rippe K. (1995) -
Travers A. A., Burgess R. R., Nature 222, 537 (1969);
(
10.1038/222537a0
) / Nature by Travers A. A. (1969) -
Greenblatt J., Li J., Cell 24, 421 (1981);
(
10.1016/0092-8674(81)90332-9
) / Cell by Greenblatt J. (1981) -
Gill S. C., Weitzel S. E., von Hippel P. H., J. Mol. Biol. 220, 307 (1991).
(
10.1016/0022-2836(91)90015-X
) / J. Mol. Biol. by Gill S. C. (1991) -
von Hippel P. H., Rees W. A., Rippe K., Wilson K. S., Biophys. Chem. 59, 231 (1996);
(
10.1016/0301-4622(96)00006-3
) / Biophys. Chem. by von Hippel P. H. (1996) -
Van Gilst M. R., Rees W. A., Das A., von Hippel P. H., Biochemistry 36, 1514 (1997).
(
10.1021/bi961920q
) / Biochemistry by Van Gilst M. R. (1997) 10.1016/S0022-2836(05)80123-8
- Reynolds R. R., Bermudez C. R. M., Chamberlin M. J., ibid. 224, 31 (1992); / ibid. by Reynolds R. R. (1992)
-
; K. S. Wilson and P. H. von Hippel ibid. 244 36 (1994); W. A. Rees S. E. Weitzel A. Das P. H. von Hippel ibid. 273 797 (1997).
(
10.1006/jmbi.1994.1702
) -
von Hippel P. H., Yager T. D., Proc. Natl. Acad. Sci. U.S.A. 88, 2307 (1991);
(
10.1073/pnas.88.6.2307
) / Proc. Natl. Acad. Sci. U.S.A. by von Hippel P. H. (1991) -
; Science 255 809 (1992).
(
10.1126/science.1536005
) - Although elongation complexes are stable with respect to dissociation under such lengthy incubation conditions slow reactions may alter the kinetic or conformational properties of such halted complexes during extended “dwell times” at a given template position (see discussion of editing and “sliding” reactions in text).
-
Polyakov A., Severinova E., Darst S. A., Cell 83, 365 (1995);
(
10.1016/0092-8674(95)90114-0
) / Cell by Polyakov A. (1995) 10.1126/science.273.5272.211
-
Asturias F. J., Meredith G. D., Poglitsch C. L., Kornberg R. D., J. Mol. Biol. 272, 536 (1997);
(
10.1006/jmbi.1997.1273
) / J. Mol. Biol. by Asturias F. J. (1997) - ; for earlier references see (18).
10.1126/science.281.5375.424
-
Kainz M., Roberts J., Science 255, 838 (1992);
(
10.1126/science.1536008
) / Science by Kainz M. (1992) - ; see also references in (19) and (21). A more three-dimensionally correct and complete model of the elongation complex [for example Fig. 1 of (9)] would show that the double-stranded DNA is sharply bent in passing through the transcription complex [
10.1126/science.8503010
- ]. This bending could facilitate the opening of the transcription bubble and the displacement of the nascent RNA and perhaps also improve access for regulatory factors to specific portions of the elongation complex.
-
Shi Y., Gamper H., Van Houten B., Hearst J. E., J. Mol. Biol. 199, 277 (1988).
(
10.1016/0022-2836(88)90314-2
) / J. Mol. Biol. by Shi Y. (1988) 10.1073/pnas.94.5.1755
- I. Sidorenkov N. Kommissarova M. Kashlev Mol. Cell in press.
- K. S. Wilson C. Conant P. H. von Hippel unpublished data.
10.1016/S0022-2836(75)80087-8
-
Krakow J. S., Fronk E., J. Biol. Chem. 244, 5988 (1969).
(
10.1016/S0021-9258(18)63570-7
) / J. Biol. Chem. by Krakow J. S. (1969) -
Gamper H. B., Hearst J. E., Cell 29, 81 (1982);
(
10.1016/0092-8674(82)90092-7
) / Cell by Gamper H. B. (1982) - ; T. D. Yager and P. H. von Hippel in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology F. Neidhardt Ed. (American Society of Microbiology Washington DC 1987) pp. 1241–1275.
-
Yager T. D., von Hippel P. H., Biochemistry 30, 1097 (1991).
(
10.1021/bi00218a032
) / Biochemistry by Yager T. D. (1991) -
Wilson K. S., von Hippel P. H., J. Mol. Biol. 244, 36 (1994);
(
10.1006/jmbi.1994.1702
) / J. Mol. Biol. by Wilson K. S. (1994) -
; Proc. Natl. Acad. Sci. U.S.A. 92 8793 (1995).
(
10.1073/pnas.92.19.8793
) 10.1093/nar/8.10.2295
- Both the run of rU resides and the contiguous terminator hairpin within the RNA are required for effective intrinsic termination (19). The formation of the termination hairpin could also partially destabilize the elongation complex by competing with the binding of a single-stranded RNA segment of the nascent transcript to the RNA-binding site (Fig. 3 region III) located just upstream of the hybrid (19) [see also
-
Altmann C. R., Solow-Cordero D. E., Chamberlin M. J., Proc. Natl. Acad. Sci. U.S.A. 91, 3784 (1994);
(
10.1073/pnas.91.9.3784
) / Proc. Natl. Acad. Sci. U.S.A. by Altmann C. R. (1994) - ; (9 14)] resulting in an additional partial destabilization of the complex by decreasing the (net favorable) contribution of the Δ G NA-polymerase o term (Eq. 1) to the stability of the complex.
-
Morgan W. D., Bear D. G., Litchman B. L., von Hippel P. H., Nucleic Acids Res. 13, 3739 (1985);
(
10.1093/nar/13.10.3739
) / Nucleic Acids Res. by Morgan W. D. (1985) -
Brennan C. A., Dombroski A. J., Platt T., Cell 48, 945 (1987);
(
10.1016/0092-8674(87)90703-3
) / Cell by Brennan C. A. (1987) -
Jin D., Burgess R. R., Richardson J. P., Gross C. A., Proc. Natl. Acad. Sci. U.S.A. 89, 1453 (1992);
(
10.1073/pnas.89.4.1453
) / Proc. Natl. Acad. Sci. U.S.A. by Jin D. (1992) - Geiselmann J., Wang Y., Seifried S. E., von Hippel P. H., ibid. 90, 7754 (1993); / ibid. by Geiselmann J. (1993)
-
Richardson J. P., J. Biol. Chem. 271, 1251 (1996);
(
10.1074/jbc.271.3.1251
) / J. Biol. Chem. by Richardson J. P. (1996) -
Walstrom K. M., Dozono J. M., Robic S., von Hippel P. H., Biochemistry 36, 7980 (1997);
(
10.1021/bi963179s
) / Biochemistry by Walstrom K. M. (1997) - ; A. Q. Zhu and P. H. von Hippel ibid. in press.
- Tethering the regulatory proteins to the nascent RNA and thus controlling the effective concentration of these proteins at the transcription complex by RNA looping permit the introduction of terminator specificity into the regulatory process (4). Thus only terminators located fairly closely downstream of the sequence that codes for the specific site on the transcript that binds the regulatory protein will be affected. In the same way the requirement for an unstructured rho-loading site on the nascent RNA transcript introduces terminator specificity into rho-dependent termination (22).
-
Erie D., Yager T. D., von Hippel P. H., Annu. Rev. Biophys. Biophys. Chem. 21, 379 (1992);
(
10.1146/annurev.bb.21.060192.002115
) / Annu. Rev. Biophys. Biophys. Chem. by Erie D. (1992) -
Fairfield F. R., Newport J. W., Dolejsi M. K., von Hippel P. H., J. Biomol. Struct. Dyn. 1, 715 (1983);
(
10.1080/07391102.1983.10507477
) / J. Biomol. Struct. Dyn. by Fairfield F. R. (1983) 10.1016/0959-440X(93)90198-T
- The simplest version of this model suggests that the transcription complex as a whole moves “monotonically” along the template maintaining register between the 3′ end of the elongating transcript and the active site of the polymerase. A more elaborate scheme based largely on nuclease footprinting observations of halted transcription complexes suggested that the polymerase might move (at least in part) by an “inchworming” mechanism [
- Chamberlin M. J., Harvey Lect. 88, 1 (1995); / Harvey Lect. by Chamberlin M. J. (1995)
- ]. In this scheme the polymerase was thought to be “flexible ” and although the active site moved monotonically with the elongating transcript it was suggested that other parts of the polymerase might remain fixed and then move along the template in larger multi–nucleotide-residue “jumps ” reflecting a cycling between “strained” and “relaxed” polymerase conformations. This alternative hypothesis has generated much valuable experimentation that has advanced the field but it now appears (12 34) that some of the evidence on which it was based may have involved dynamic footprinting artifacts associated with movement (during footprinting) of the halted and “back-sliding” transcription complexes.
-
Lohman T. M., Thorn K., Vale R. D., Cell 93, 9 (1998).
(
10.1016/S0092-8674(00)81139-3
) / Cell by Lohman T. M. (1998) 10.1126/science.270.5242.1653
-
Wang H.-Y., Elston T., Mogilner A., Oster G., Biophys. J. 74, 1186 (1998);
(
10.1016/S0006-3495(98)77834-8
) / Biophys. J. by Wang H.-Y. (1998) 10.1016/S0092-8674(00)81140-X
- T. D. Yager J. Korte and P. H. von Hippel unpublished cited in D. A. Erie et al. (31); see also
-
Kato K. I., Goncalves J. M., Houts G. E., Bollum F. J., J. Biol. Chem. 242, 2780 (1967).
(
10.1016/S0021-9258(18)99635-3
) / J. Biol. Chem. by Kato K. I. (1967) -
Rozoskaya T. A., Chenchik A. A., Bibilashvilli R. S., FEBS Lett. 137, 100 (1982);
(
10.1016/0014-5793(82)80323-2
) / FEBS Lett. by Rozoskaya T. A. (1982) -
Kassevetis G. A., Zenner P. G., Geiduschek E. P, J. Biol. Chem. 261, 14256 (1986).
(
10.1016/S0021-9258(18)67012-7
) / J. Biol. Chem. by Kassevetis G. A. (1986) -
Echols H., Goodman M. F., Annu. Rev. Biochem. 60, 477 (1991).
(
10.1146/annurev.bi.60.070191.002401
) / Annu. Rev. Biochem. by Echols H. (1991) 10.1126/science.8235608
-
Izban M. G., Luse D. S., Genes Dev. 6, 1342 (1992);
(
10.1101/gad.6.7.1342
) / Genes Dev. by Izban M. G. (1992) -
Borukhov S., Sagitov V., Goldfarb A., Cell 72, 459 (1993);
(
10.1016/0092-8674(93)90121-6
) / Cell by Borukhov S. (1993) - . The analogy to editing by DNA polymerase is not complete because these transcription factors do not themselves seem to have any exonucleolytic or endonucleolytic activity. Rather they appear to activate chain cleavage by an as yet undefined mechanism probably involving the same catalytic subsites of the polymerase that function in transcript elongation.
-
Surratt C. K., Milan S. C., Chamberlin M. J., Proc. Natl. Acad. Sci. U.S.A. 88, 7983 (1991).
(
10.1073/pnas.88.18.7983
) / Proc. Natl. Acad. Sci. U.S.A. by Surratt C. K. (1991) 10.1016/S0092-8674(00)81395-1
10.1074/jbc.272.24.15329
10.1016/S0092-8674(00)80180-4
- Landick R., ibid. 88, 741 (1997). / ibid. by Landick R. (1997)
10.1016/S0092-8674(00)81191-5
- This proposed sliding mechanism for polymerase relative to the nucleic acid framework of the transcription complex is similar to the one-dimensional diffusion of electrostatically (and nonspecifically) bound proteins along double-stranded DNA in locating their regulatory targets [see
-
von Hippel P. H., Berg O. G., J. Biol. Chem. 264, 675 (1989);
(
10.1016/S0021-9258(19)84994-3
) / J. Biol. Chem. by von Hippel P. H. (1989) - ]. However the “zippering” movement of the transcription bubble and the RNA-DNA hybrid along template DNA is not entirely “isopotential ” because translocation of the complex by one base pair may result in the opening (for example) of two more stable G · C base pairs and the closing of two less stable A · T (or A · U) base pairs. The resulting small differences in the net stability of the transcription complex as a function of template position may help to define the pausing positions of elongation complexes moving both backward and forward along the template.
- For example see
10.1126/science.7516580
-
Doublié S., Tabor S., Long A. M., Richardson C. C., Ellenberger T., Nature 391, 251 (1998);
(
10.1038/34593
) / Nature by Doublié S. (1998) - ; J. R. Kiefer C. Mao J. C. Braman L. S. Beese ibid. p. 304.
- I thank my laboratory colleagues whose experimental and theoretical work has led to many of the ideas developed here as well as many colleagues at the University of Oregon and elsewhere for stimulating discussions. References included in this article can only “scratch the surface” in acknowledging the work of colleagues in other laboratories and of those who came before. The preparation of this article was supported in part by U.S. Public Health Service research grants GM-15792 and GM-29158. The author is an American Cancer Society Research Professor of Chemistry.
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 27, 2002, 5:49 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 12, 2024, 10:03 p.m.) |
Indexed | 1 month, 2 weeks ago (July 11, 2025, 6:40 a.m.) |
Issued | 27 years ago (July 31, 1998) |
Published | 27 years ago (July 31, 1998) |
Published Print | 27 years ago (July 31, 1998) |
@article{von_Hippel_1998, title={An Integrated Model of the Transcription Complex in Elongation, Termination, and Editing}, volume={281}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.281.5377.660}, DOI={10.1126/science.281.5377.660}, number={5377}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={von Hippel, Peter H.}, year={1998}, month=jul, pages={660–665} }