10.1126/science.281.5376.540
Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

A tunable Kondo effect has been realized in small quantum dots. A dot can be switched from a Kondo system to a non-Kondo system as the number of electrons on the dot is changed from odd to even. The Kondo temperature can be tuned by means of a gate voltage as a single-particle energy state nears the Fermi energy. Measurements of the temperature and magnetic field dependence of a Coulomb-blockaded dot show good agreement with predictions of both equilibrium and nonequilibrium Kondo effects.

Bibliography

Cronenwett, S. M., Oosterkamp, T. H., & Kouwenhoven, L. P. (1998). A Tunable Kondo Effect in Quantum Dots. Science, 281(5376), 540–544.

Authors 3
  1. Sara M. Cronenwett (first)
  2. Tjerk H. Oosterkamp (additional)
  3. Leo P. Kouwenhoven (additional)
References 27 Referenced 1,489
  1. For a review see L. P. Kouwenhoven et al. in Mesoscopic Electron Transport Proceedings of a NATO Advanced Study Institute L. L. Sohn L. P. Kouwenhoven G. Schön Eds. (Kluwer Dordrecht Netherlands 1997) ser. E vol. 345 pp. 105–214; available at:
  2. For a review on cotunneling see D. V. Averin and Y. V. Nazarov in Single Charge Tunneling Proceedings of a NATO Advanced Study Institute H. Grabert and M. H. Devoret Eds. (Plenum New York 1991) ser. B vol. 294 pp. 217–247.
  3. L. I. Glazman and M. É. Raikh Pis'ma Zh. Eksp. Teor. Fiz. 47 378 (1988) [ JETP Lett. 47 452 (1988)].
  4. 10.1103/PhysRevLett.61.1768
  5. Kawabata A., J. Phys. Soc. Jpn. 60, 3222 (1991). (10.1143/JPSJ.60.3222) / J. Phys. Soc. Jpn. by Kawabata A. (1991)
  6. 10.1103/PhysRevLett.70.2601
  7. ; N. S. Wingreen and Y. Meir Phys. Rev. B 49 11040 (1994). (10.1103/PhysRevB.49.11040)
  8. Hershfield S., Davies J. H., Wilkins J. W., Phys. Rev. Lett. 67, 3720 (1991). (10.1103/PhysRevLett.67.3720) / Phys. Rev. Lett. by Hershfield S. (1991)
  9. König J., Schmid J., Schoeller H., Schön G., Phys. Rev. B 54, 16820 (1996); (10.1103/PhysRevB.54.16820) / Phys. Rev. B by König J. (1996)
  10. ; for further references see H. Schoeller in Mesoscopic Electron Transport Proceedings of a NATO Advanced Study Institute L. L. Sohn L. P. Kouwenhoven G. Schön Eds. (Kluwer Dordrecht Netherlands 1997) ser. E vol. 345 pp. 291–330.
  11. 10.1038/34373
  12. J. Kondo in Solid State Physics H. Ehrenreicht F. Seitz D. Turnbull Eds. (Academic Press New York 1969) vol. 23 p. 183–281.
  13. Ralph D. C., Buhrman R. A., Phys. Rev. Lett. 72, 3401 (1994); (10.1103/PhysRevLett.72.3401) / Phys. Rev. Lett. by Ralph D. C. (1994)
  14. Yanson I. K., et al., ibid. 74, 302 (1995). (10.1103/PhysRevLett.74.302) / ibid. by Yanson I. K. (1995)
  15. In measurements of the evolution of the CB peaks versus B we observe pairing in the motion between adjacent peaks. This indicates spin-degenerate filling of the energy states in contrast to the results of D. R. Stewart et al. [ Science 278 1784 (1997)] who reported non–spin-degenerate filling of the energy states.
  16. Wan Y., Phillips P., Li Q., Phys. Rev. B 51, 14782 (1995). (10.1103/PhysRevB.51.14782) / Phys. Rev. B by Wan Y. (1995)
  17. The two quantum dots form the double dot structure discussed in detail by N. C. van der Vaart et al. [ Phys. Rev. Lett. 74 4702 (1995)]. Each dot was measured independently by biasing only the gate voltages that define a single dot.
  18. Measurements were made with a variable dc bias. For dI / dV traces an ac bias of 1 μV at 13.5 Hz was added for lock-in detection. The effective electron base temperature T base ≈ 45 mK was measured from CB peak widths in the weak tunneling regime.
  19. Bickers N. E., Rev. Mod. Phys. 59, 845 (1987). (10.1103/RevModPhys.59.845) / Rev. Mod. Phys. by Bickers N. E. (1987)
  20. The presence of more than one state in our dots is expected to enhance the Kondo temperature. For an analysis of multiple-level effects see
  21. Inoshita T., et al., Phys. Rev. B 48, 14725 (1993); (10.1103/PhysRevB.48.14725) / Phys. Rev. B by Inoshita T. (1993)
  22. ; T. Inoshita Y. Kuramoto H. Sakaki Superlattices Microstruct. 22 75 (1997); (10.1006/spmi.1996.0265)
  23. Pohjola T., et al., Europhys. Lett. 40, 189 (1997). (10.1209/epl/i1997-00444-0) / Europhys. Lett. by Pohjola T. (1997)
  24. Foxman E. B., et al., Phys. Rev. B 47, 10020 (1993). (10.1103/PhysRevB.47.10020) / Phys. Rev. B by Foxman E. B. (1993)
  25. The dI / dV minimum of valley 4 resembles the form predicted by J. König H. Schoeller and G. Schön [ Phys. Rev. Lett. 76 1715 (1996)] for a quantum dot with N = even.
  26. Our data fit well to the theoretical predictions when we use the g factor for bulk GaAs g = −0.44 whereas the g factor in the 2DEG of a typical GaAs/AlGaAs heterostructure has been experimentally determined to be less than in the bulk by M. Dobers K. v. Klitzing and G. Weimann [ Phys. Rev. B 38 5453 (1988)].
  27. We thank R. Aguado B. Broer L. I. Glazman S. F. Godijn K. K. Likharev C. M. Marcus J. E. Mooij and N. C. van der Vaart for help and discussions and Philips Laboratories and C. T. Foxon for providing the heterostructure. Supported by the Dutch Foundation for Fundamental Research on Matter (FOM) the Royal Netherlands Academy of Arts and Sciences (L.P.K.) and the NSF under grant DMR-945805 (S.M.C.).
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:43 a.m.)
Deposited 1 year, 7 months ago (Jan. 12, 2024, 10:19 p.m.)
Indexed 1 week, 1 day ago (Aug. 19, 2025, 6:56 a.m.)
Issued 27 years, 1 month ago (July 24, 1998)
Published 27 years, 1 month ago (July 24, 1998)
Published Print 27 years, 1 month ago (July 24, 1998)
Funders 0

None

@article{Cronenwett_1998, title={A Tunable Kondo Effect in Quantum Dots}, volume={281}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.281.5376.540}, DOI={10.1126/science.281.5376.540}, number={5376}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Cronenwett, Sara M. and Oosterkamp, Tjerk H. and Kouwenhoven, Leo P.}, year={1998}, month=jul, pages={540–544} }