Abstract
The chain conformation of glassy poly(ethylene terephthalate) (PET) was characterized by two-dimensional double-quantum nuclear magnetic resonance (NMR). In amorphous carbon-13–labeled PET, the statistics of the O– 13 CH 2 – 13 CH 2 –O torsion angle were determined, on the basis of the distinct shapes of the two-dimensional NMR patterns of trans and gauche conformations. In crystalline PET, the trans content is 100 percent, but in the amorphous PET it is only 14 percent (±5 percent). An average gauche torsion angle of 70 degrees (±9 degrees) was obtained. Implications for materials properties of polyesters are discussed.
References
36
Referenced
133
- Chemical Week 19 June 1996 p. 38.
- P. J. Flory Statistical Mechanics of Chain Molecules (Wiley-Interscience New York 1969) pp. 190–192.
- W. L. Mattice and U. W. Suter Conformational Theory of Large Molecules (Wiley New York 1994) pp. 234–237.
-
R. de Daubeny P., Bunn C. W., Brown C. J., Proc. R. Soc. London Ser. A 226, 531 (1954).
(
10.1098/rspa.1954.0273
) / Proc. R. Soc. London Ser. A by Daubeny P. (1954) - Trans is also known as (fully staggered) anti or antiperiplanar and gauche is also known as synclinal. The trans conformation of PET is shown in Fig. 1.
-
E. Riande and J. Guzman J. Polym. Sci. Polym. Phys. Ed. 23 1235 (1985).
(
10.1002/pol.1985.180230614
) -
Bahar I., Mattice W. L., J. Chem. Phys.90, 6783 (1989).
(
10.1063/1.456297
) / J. Chem. Phys. by Bahar I. (1989) -
Mendicuti F., Rodrigo M. M., Tarazona M. P., Saiz E., Macromolecules23, 1139 (1990).
(
10.1021/ma00206a036
) / Macromolecules by Mendicuti F. (1990) - San Roman J., Guzman J., Riande E., Santoro J., Rico M., ibid15, 609 (1982). / ibid by San Roman J. (1982)
-
P. J. Flory and J. E. Mark, Makromol. Chem. 75, 11 (1964); A. Abe, J. W. Kennedy, P. J. Flory,J. Polym. Sci. Polym. Phys. Ed. 14, 1337 (1976); Abe A., Mark J. E., J. Am. Chem. Soc. 98, 6468 (1976); A. Abe, K. Tasaki, J. E. Mark, Polym. J. 17, 883 (1985).
(
10.1021/ja00437a006
) / J. Am. Chem. Soc. by Abe A. (1976) -
A. Ajji J. Guèvremont K. C. Cole M. M. Dumoulin Polymer 37 3707 (1996).
(
10.1016/0032-3861(96)00175-9
) -
X. Yang F. Long D. Shen R. Qian ibid. 32 125 (1991).
(
10.1136/gut.32.2.125
) -
J. C. Rodriguez-Cabello L. Quintanilla J. M. Pastor J. Raman Spectrosc. 25 335 (1994).
(
10.1002/jrs.1250250509
) -
M. Yazdanian I. M. Ward H. Brody Polymer 26 1779 (1985)
(
10.1016/0032-3861(85)90003-5
) -
A. Cunningham I. M. Ward H. A. Willis V. Zichy ibid. 15 749 (1974).
(
10.1016/0032-3861(74)90028-7
) -
S. B. Lin and J. L. Koenig, J. Polym. Sci. Polym. Phys. Ed. 20, 2277 (1982); Liu J., Koenig J. L., Anal. Chem. 59, 2609 (1987).
(
10.1021/ac00148a017
) / Anal. Chem. by Liu J. (1987) -
R. F. Rapold U. W. Suter D. N. Theodorou Macromol. Theory Simul. 3 19 (1994).
(
10.1002/mats.1994.040030103
) - K. Schmidt-Rohr and H. W. Spiess Multidimensional Solid-State NMR and Polymers (Academic Press London 1994).
-
Dabbagh G., Weliky D. P., Tycko R., Macromolecules27, 6138 (1994).
(
10.1021/ma00099a038
) / Macromolecules by Dabbagh G. (1994) - P. Robyr, et al., Mol. Phys. 84, 995 (1995); Tomaselli M., et al., ibid 89, 1663 (1996). / ibid by Tomaselli M. (1996)
-
Schmidt-Rohr K., Macromolecules29, 3975 (1996).
(
10.1021/ma9517106
) / Macromolecules by Schmidt-Rohr K. (1996) - ___ J. Magn. Reson. in press.
- ___ W. Hu N. Zumbulyadis in preparation.
- A. Bax, R. Freeman, S. P. Kempsell, J. Am. Chem. Soc. 102, 4849 (1980); Bax A., Freeman R., Frankiell T., Levitt M. H., J. Magn. Reson. 43, 478 (1981); R. R. Ernst, G. Bodenhausen, A. Wokaun, Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ. Press, Oxford, 1987). / J. Magn. Reson. by Bax A. (1981)
-
Nakai T., McDowell C. A., Mol. Phys.79, 965 (1993).
(
10.1080/00268979300101761
) / Mol. Phys. by Nakai T. (1993) - The 2D spectra were rotated by 90° from the traditional representation to simplify the comparison of the intensity patterns along the double-quantum dimension.
- To make the PET sample amorphous we quenched it from the clear melt into liquid nitrogen. The residual crystallinity was 5 ± 2% according to the following measurements. Wide-angle x-ray scattering (WAXS) showed only an amorphous halo (crystallinity < 8%). From the density ρ = 1.34(4 ± 2) g/cm 3 measured by flotation in a series of salt solutions the crystallinity was estimated as 4.5 ± 1.5% on the basis of amorphous and crystalline densities of ρ a = 1.33(6 ± 2) g/cm 3 and ρ c = 1.5(1 ± 2) g/cm 3 respectively. Thermal analysis (difference between crystallization and melting peak areas with a heat of fusion Δ h f = 140 ± 20 J/g) yielded 8 ± 4% crystallinity. Cross-polarization–magic-angle spinning (CP-MAS) 13 C NMR showed no separate crystalline peak; selection of the long 13 C longitudinal relaxation time T 1 components yielded 3 ± 2.5% crystallinity.
- The trans fraction of the amorphous phase was obtained as (18.5% − 5%)/0.95 = 14%.
- The sample obtained by crystallizing the amorphous PET at 160°C for 2 hours had a crystallinity of 32 ± 4% by thermal analysis and 28 ± 4% by CP-MAS NMR. WAXS showed strong crystalline reflections.
- In the semicrystalline sample relatively fast relaxation of the spin-locked 1 H magnetization of the amorphous phase was observed. With a rotating-frame spin-lattice relaxation time T 1ρ of ∼4 ms the signal from the amorphous regions observed in the 13 C spectrum was attenuated by 0.88 during the cross-polarization spin lock of 0.5 ms. Thus the 47/53 (±6) trans/gauche ratio found in the spectrum had to be corrected slightly to 44/56 (±6).
- G. Natta and P. Corradini Nuovo Cimento Suppl. Ser. X XV 13 (1960).
- D. C. Clagett in Encyclopedia of Polymer Science & Engineering H. F. Mark et al. Eds. (Wiley New York 1989) vol. 6 pp. 114–115; J. Y. Jadhav and S. W. Kantor in ibid. vol. 12 p. 219.
-
G. Strobl The Physics of Polymers (Springer-Verlag New York 1996) pp. 169–172.
(
10.1007/978-3-662-03243-5
) -
S. Roeber and H. G. Zachmann Polymer 33 2061 (1992).
(
10.1016/0032-3861(92)90872-T
) -
K. Schmidt-Rohr M. Wilhelm A. Johansson H. W. Spiess Magn. Reson. Chem. 31 352 (1993).
(
10.1002/mrc.1260310408
) - Generous financial support for K.S.-R. by a Beckman Young Investigator Award is gratefully acknowledged. Partial support was also provided by the NSF Materials Research Science and Engineering Center and by NSF grant DMR-9703916. K.S.-R. thanks M. Hong for stimulating discussions on data quantification.
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 27, 2002, 5:37 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 13, 2024, 12:15 a.m.) |
Indexed | 2 months ago (July 1, 2025, 2:25 p.m.) |
Issued | 27 years, 4 months ago (May 1, 1998) |
Published | 27 years, 4 months ago (May 1, 1998) |
Published Print | 27 years, 4 months ago (May 1, 1998) |
@article{Schmidt_Rohr_1998, title={Elucidation of the Chain Conformation in a Glassy Polyester, PET, by Two-Dimensional NMR}, volume={280}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.280.5364.714}, DOI={10.1126/science.280.5364.714}, number={5364}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Schmidt-Rohr, K. and Hu, W. and Zumbulyadis, N.}, year={1998}, month=may, pages={714–717} }