Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

The chain conformation of glassy poly(ethylene terephthalate) (PET) was characterized by two-dimensional double-quantum nuclear magnetic resonance (NMR). In amorphous carbon-13–labeled PET, the statistics of the O– 13 CH 2 – 13 CH 2 –O torsion angle were determined, on the basis of the distinct shapes of the two-dimensional NMR patterns of trans and gauche conformations. In crystalline PET, the trans content is 100 percent, but in the amorphous PET it is only 14 percent (±5 percent). An average gauche torsion angle of 70 degrees (±9 degrees) was obtained. Implications for materials properties of polyesters are discussed.

Bibliography

Schmidt-Rohr, K., Hu, W., & Zumbulyadis, N. (1998). Elucidation of the Chain Conformation in a Glassy Polyester, PET, by Two-Dimensional NMR. Science, 280(5364), 714–717.

Authors 3
  1. K. Schmidt-Rohr (first)
  2. W. Hu (additional)
  3. N. Zumbulyadis (additional)
References 36 Referenced 133
  1. Chemical Week 19 June 1996 p. 38.
  2. P. J. Flory Statistical Mechanics of Chain Molecules (Wiley-Interscience New York 1969) pp. 190–192.
  3. W. L. Mattice and U. W. Suter Conformational Theory of Large Molecules (Wiley New York 1994) pp. 234–237.
  4. R. de Daubeny P., Bunn C. W., Brown C. J., Proc. R. Soc. London Ser. A 226, 531 (1954). (10.1098/rspa.1954.0273) / Proc. R. Soc. London Ser. A by Daubeny P. (1954)
  5. Trans is also known as (fully staggered) anti or antiperiplanar and gauche is also known as synclinal. The trans conformation of PET is shown in Fig. 1.
  6. E. Riande and J. Guzman J. Polym. Sci. Polym. Phys. Ed. 23 1235 (1985). (10.1002/pol.1985.180230614)
  7. Bahar I., Mattice W. L., J. Chem. Phys.90, 6783 (1989). (10.1063/1.456297) / J. Chem. Phys. by Bahar I. (1989)
  8. Mendicuti F., Rodrigo M. M., Tarazona M. P., Saiz E., Macromolecules23, 1139 (1990). (10.1021/ma00206a036) / Macromolecules by Mendicuti F. (1990)
  9. San Roman J., Guzman J., Riande E., Santoro J., Rico M., ibid15, 609 (1982). / ibid by San Roman J. (1982)
  10. P. J. Flory and J. E. Mark, Makromol. Chem. 75, 11 (1964); A. Abe, J. W. Kennedy, P. J. Flory,J. Polym. Sci. Polym. Phys. Ed. 14, 1337 (1976); Abe A., Mark J. E., J. Am. Chem. Soc. 98, 6468 (1976); A. Abe, K. Tasaki, J. E. Mark, Polym. J. 17, 883 (1985). (10.1021/ja00437a006) / J. Am. Chem. Soc. by Abe A. (1976)
  11. A. Ajji J. Guèvremont K. C. Cole M. M. Dumoulin Polymer 37 3707 (1996). (10.1016/0032-3861(96)00175-9)
  12. X. Yang F. Long D. Shen R. Qian ibid. 32 125 (1991). (10.1136/gut.32.2.125)
  13. J. C. Rodriguez-Cabello L. Quintanilla J. M. Pastor J. Raman Spectrosc. 25 335 (1994). (10.1002/jrs.1250250509)
  14. M. Yazdanian I. M. Ward H. Brody Polymer 26 1779 (1985) (10.1016/0032-3861(85)90003-5)
  15. A. Cunningham I. M. Ward H. A. Willis V. Zichy ibid. 15 749 (1974). (10.1016/0032-3861(74)90028-7)
  16. S. B. Lin and J. L. Koenig, J. Polym. Sci. Polym. Phys. Ed. 20, 2277 (1982); Liu J., Koenig J. L., Anal. Chem. 59, 2609 (1987). (10.1021/ac00148a017) / Anal. Chem. by Liu J. (1987)
  17. R. F. Rapold U. W. Suter D. N. Theodorou Macromol. Theory Simul. 3 19 (1994). (10.1002/mats.1994.040030103)
  18. K. Schmidt-Rohr and H. W. Spiess Multidimensional Solid-State NMR and Polymers (Academic Press London 1994).
  19. Dabbagh G., Weliky D. P., Tycko R., Macromolecules27, 6138 (1994). (10.1021/ma00099a038) / Macromolecules by Dabbagh G. (1994)
  20. P. Robyr, et al., Mol. Phys. 84, 995 (1995); Tomaselli M., et al., ibid 89, 1663 (1996). / ibid by Tomaselli M. (1996)
  21. Schmidt-Rohr K., Macromolecules29, 3975 (1996). (10.1021/ma9517106) / Macromolecules by Schmidt-Rohr K. (1996)
  22. ___ J. Magn. Reson. in press.
  23. ___ W. Hu N. Zumbulyadis in preparation.
  24. A. Bax, R. Freeman, S. P. Kempsell, J. Am. Chem. Soc. 102, 4849 (1980); Bax A., Freeman R., Frankiell T., Levitt M. H., J. Magn. Reson. 43, 478 (1981); R. R. Ernst, G. Bodenhausen, A. Wokaun, Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ. Press, Oxford, 1987). / J. Magn. Reson. by Bax A. (1981)
  25. Nakai T., McDowell C. A., Mol. Phys.79, 965 (1993). (10.1080/00268979300101761) / Mol. Phys. by Nakai T. (1993)
  26. The 2D spectra were rotated by 90° from the traditional representation to simplify the comparison of the intensity patterns along the double-quantum dimension.
  27. To make the PET sample amorphous we quenched it from the clear melt into liquid nitrogen. The residual crystallinity was 5 ± 2% according to the following measurements. Wide-angle x-ray scattering (WAXS) showed only an amorphous halo (crystallinity < 8%). From the density ρ = 1.34(4 ± 2) g/cm 3 measured by flotation in a series of salt solutions the crystallinity was estimated as 4.5 ± 1.5% on the basis of amorphous and crystalline densities of ρ a = 1.33(6 ± 2) g/cm 3 and ρ c = 1.5(1 ± 2) g/cm 3 respectively. Thermal analysis (difference between crystallization and melting peak areas with a heat of fusion Δ h f = 140 ± 20 J/g) yielded 8 ± 4% crystallinity. Cross-polarization–magic-angle spinning (CP-MAS) 13 C NMR showed no separate crystalline peak; selection of the long 13 C longitudinal relaxation time T 1 components yielded 3 ± 2.5% crystallinity.
  28. The trans fraction of the amorphous phase was obtained as (18.5% − 5%)/0.95 = 14%.
  29. The sample obtained by crystallizing the amorphous PET at 160°C for 2 hours had a crystallinity of 32 ± 4% by thermal analysis and 28 ± 4% by CP-MAS NMR. WAXS showed strong crystalline reflections.
  30. In the semicrystalline sample relatively fast relaxation of the spin-locked 1 H magnetization of the amorphous phase was observed. With a rotating-frame spin-lattice relaxation time T 1ρ of ∼4 ms the signal from the amorphous regions observed in the 13 C spectrum was attenuated by 0.88 during the cross-polarization spin lock of 0.5 ms. Thus the 47/53 (±6) trans/gauche ratio found in the spectrum had to be corrected slightly to 44/56 (±6).
  31. G. Natta and P. Corradini Nuovo Cimento Suppl. Ser. X XV 13 (1960).
  32. D. C. Clagett in Encyclopedia of Polymer Science & Engineering H. F. Mark et al. Eds. (Wiley New York 1989) vol. 6 pp. 114–115; J. Y. Jadhav and S. W. Kantor in ibid. vol. 12 p. 219.
  33. G. Strobl The Physics of Polymers (Springer-Verlag New York 1996) pp. 169–172. (10.1007/978-3-662-03243-5)
  34. S. Roeber and H. G. Zachmann Polymer 33 2061 (1992). (10.1016/0032-3861(92)90872-T)
  35. K. Schmidt-Rohr M. Wilhelm A. Johansson H. W. Spiess Magn. Reson. Chem. 31 352 (1993). (10.1002/mrc.1260310408)
  36. Generous financial support for K.S.-R. by a Beckman Young Investigator Award is gratefully acknowledged. Partial support was also provided by the NSF Materials Research Science and Engineering Center and by NSF grant DMR-9703916. K.S.-R. thanks M. Hong for stimulating discussions on data quantification.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:37 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 12:15 a.m.)
Indexed 2 months ago (July 1, 2025, 2:25 p.m.)
Issued 27 years, 4 months ago (May 1, 1998)
Published 27 years, 4 months ago (May 1, 1998)
Published Print 27 years, 4 months ago (May 1, 1998)
Funders 0

None

@article{Schmidt_Rohr_1998, title={Elucidation of the Chain Conformation in a Glassy Polyester, PET, by Two-Dimensional NMR}, volume={280}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.280.5364.714}, DOI={10.1126/science.280.5364.714}, number={5364}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Schmidt-Rohr, K. and Hu, W. and Zumbulyadis, N.}, year={1998}, month=may, pages={714–717} }