Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Process improvements in silica membrane fabrication, especially the use of clean-room techniques, resulted in silica membranes without detectable mesoscopic defects, resulting in significantly improved transport properties. Supported membranes calcined at 400°C were 30 nanometers in thickness, showed a H 2 permeance at 200°C of 2 × 10 −6 moles per square meter per second per Pascal (mol m −2 s −1 Pa −1 ), and had a CH 4 permeance more than 500 times smaller. Molecules larger than CH 4 were completely blocked. Silica membranes calcined at 600°C showed no detectable CH 4 flux, with a H 2 permeance of 5 × 10 −7 (mol m −2 s −1 Pa −1 ) at 200°C. These results signify an important step toward the industrial application of these membranes such as purification of H 2 and natural gas as well as the selective removal of CO 2 .

Bibliography

de Vos, R. M., & Verweij, H. (1998). High-Selectivity, High-Flux Silica Membranes for Gas Separation. Science, 279(5357), 1710–1711.

Authors 2
  1. Renate M. de Vos (first)
  2. Henk Verweij (additional)
References 15 Referenced 538
  1. D. E. Fain in Proceedings of the Third International Conference on Inorganic Membranes 10 to 14 July 1994 Worcester MA (1995) pp. 365-379
  2. A. J. Burggraaf and L. Cot in Fundamentals of Inorganic Membrane Science and Technology vol. 4 of Membrane Science and Technology Series A. J. Burggraaf and L. Cot Eds. (Elsevier Amsterdam 1996) chap. 1. (10.1016/S0927-5193(96)80001-5)
  3. The alumina powder was type CR-6 Baikowski Chimie Annecy France. Granulation was done at Philips Lighting Uden Netherlands in a dedicated spray-drying production facility.
  4. R. J. R. Uhlhorn M. H. B. J. Huis In't Veld K. Keizer A. J. Burggraaf J. Mater. Sci. 27 527 (1992). (10.1007/BF00543947)
  5. The TEOS was P.a. grade (Aldrich).
  6. R. S. A. de Lange J. H. A. Hekkink K. Keizer A. J. Burggraaf J. Membr. Sci. 99 57 (1995). (10.1016/0376-7388(94)00206-E)
  7. Koros W. J., Ma Y. H., Shimidzu T., Pure Appl. Chem. 68, 1479 (1996). (10.1351/pac199668071479) / Pure Appl. Chem. by Koros W. J. (1996)
  8. The ability to directly calculate separation performance from J is supported by the fact the membrane's silica material showed Henri-type adsorption behavior at the gas pressures and temperatures considered here (8).
  9. R. S. A. de Lange J. H. A. Hekkink K. Keizer A. J. Burggraaf Y. H. Ma J. Porous Mater. 2 141 (1995). (10.1007/BF00489722)
  10. R. S. A. de Lange J. H. A. Hekkink K. Keizer A. J. Burggraaf Microporous Mater. 4 169 (1995). (10.1016/0927-6513(95)00004-S)
  11. M. H. Hassan J. D. Way P. M. Thoen A. C. Dillon J. Membr. Sci. 104 27 (1995). (10.1016/0376-7388(95)00009-2)
  12. The measurements on Media and Process Technology (Pittsburgh PA) membranes were performed in our laboratory [internal report (1996)].
  13. R. K. Iler The Chemistry of Silica (Wiley New York 1979) chap. 6.
  14. D. W. Breck Zeolites Molecular Sieves: Structure Chemistry and Use (Wiley New York 1973) p. 626.
  15. We gratefully acknowledge E. Keim (Centre for Materials Research) for TEM analysis. This project is financially supported by Energie Centrum Nederland (Netherlands Energy Research Foundation ECN).
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:42 a.m.)
Deposited 1 year, 7 months ago (Jan. 13, 2024, 1:06 a.m.)
Indexed 1 month ago (July 28, 2025, 5:31 p.m.)
Issued 27 years, 5 months ago (March 13, 1998)
Published 27 years, 5 months ago (March 13, 1998)
Published Print 27 years, 5 months ago (March 13, 1998)
Funders 0

None

@article{de_Vos_1998, title={High-Selectivity, High-Flux Silica Membranes for Gas Separation}, volume={279}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.279.5357.1710}, DOI={10.1126/science.279.5357.1710}, number={5357}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={de Vos, Renate M. and Verweij, Henk}, year={1998}, month=mar, pages={1710–1711} }