Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Atomically precise quantum dots of mesoscopic size have been fabricated in the gallium arsenide–aluminum gallium arsenide material system by cleaved edge overgrowth, with a high degree of control over shape, composition, and position. The formation of bonding and antibonding states between two such “artificial atoms” was studied as a function of quantum dot separation by microscopic photoluminescence (PL) spectroscopy. The coupling strength within these “artificial molecules” is characterized by a systematic dependence of the separation of the bonding and antibonding levels, and of the PL linewidth, on the “interatomic” distance. This model system opens new insights into the physics of coupled quantum objects.

Bibliography

Schedelbeck, G., Wegscheider, W., Bichler, M., & Abstreiter, G. (1997). Coupled Quantum Dots Fabricated by Cleaved Edge Overgrowth: From Artificial Atoms to Molecules. Science, 278(5344), 1792–1795.

Authors 4
  1. Gert Schedelbeck (first)
  2. Werner Wegscheider (additional)
  3. Max Bichler (additional)
  4. Gerhard Abstreiter (additional)
References 31 Referenced 263
  1. Brunner K., et al., Phys. Rev. Lett. 69, 3216 (1992). (10.1103/PhysRevLett.69.3216) / Phys. Rev. Lett. by Brunner K. (1992)
  2. van der Vaart N. C., et al., ibid. 74, 4702 (1995); (10.1103/PhysRevLett.74.4702) / ibid. by van der Vaart N. C. (1995)
  3. ; F. R. Waugh et al. ibid. 75 705 (1995). (10.1103/PhysRevLett.75.705)
  4. A. Zrenner et al. ibid. 72 3382 (1994). (10.1103/PhysRevLett.72.3382)
  5. 10.1126/science.264.5166.1740
  6. Brunner K., Abstreiter G., Böhm G., Tränkle G., Weimann G., Phys. Rev. Lett. 73, 1138 (1994). (10.1103/PhysRevLett.73.1138) / Phys. Rev. Lett. by Brunner K. (1994)
  7. Gammon D., Snow E. S., Shanabrook B. V., Kratzer D. S., Park D., ibid. 76, 3005 (1996); (10.1103/PhysRevLett.76.3005) / ibid. by Gammon D. (1996)
  8. ; Science 273 87 (1996). (10.1016/S0032-5910(96)90068-6)
  9. Marzin J.-Y., Gérard J.-M., Izraël A., Barrier D., Bastard G., Phys. Rev. Lett. 73, 716 (1994). (10.1103/PhysRevLett.73.716) / Phys. Rev. Lett. by Marzin J.-Y. (1994)
  10. 10.1126/science.267.5206.1966
  11. Grundmann M., et al., Phys. Rev. Lett. 74, 4043 (1995). (10.1103/PhysRevLett.74.4043) / Phys. Rev. Lett. by Grundmann M. (1995)
  12. M. A. Kastner Phys. Today 46 24 (January 1993); (10.1063/1.881393)
  13. Klein O., et al., Phys. Rev. Lett. 74, 785 (1995); (10.1103/PhysRevLett.74.785) / Phys. Rev. Lett. by Klein O. (1995)
  14. Ashoori R. C., et al., ibid. 71, 613 (1993); (10.1103/PhysRevLett.71.613) / ibid. by Ashoori R. C. (1993)
  15. Ashoori R. C., Nature 379, 413 (1996). (10.1038/379413a0) / Nature by Ashoori R. C. (1996)
  16. 10.1103/PhysRevLett.77.3613
  17. Y. Arakawa and A. Yariv IEEE J. Quantum Electron. 22 1887 (1986). (10.1109/JQE.1986.1073185)
  18. 10.1126/science.268.5216.1440
  19. Pfeiffer L., et al., Appl. Phys. Lett. 56, 1697 (1990). (10.1063/1.103121) / Appl. Phys. Lett. by Pfeiffer L. (1990)
  20. Light from a tunable dye laser was focused through a microscope objective lens (numerical aperture = 0.75 power density = 50 W cm −2 ) onto the sample mounted in a He cryostat. Under such conditions less than one exciton at a time is expected to be in the QDs. The emitted light was collected by the same objective lens and directed to a confocal imaging system which defined a nearly diffraction-limited detection range of FWHM = 800 nm. The PL signal was dispersed with a triple-grating spectrometer (spectral resolution = 40 μeV) and detected with a cooled charge-coupled-device camera.
  21. The PL energy of (110) QWs is red-shifted with respect to that of (001) QWs of identical thickness because of different heavy hole masses in these two directions.
  22. Hasen J., et al., Nature 390, 54 (1997). (10.1038/36299) / Nature by Hasen J. (1997)
  23. Grundmann M., Bimberg D., Phys. Rev. B 55, 4054 (1997). (10.1103/PhysRevB.55.4054) / Phys. Rev. B by Grundmann M. (1997)
  24. P. Platzman personal communication.
  25. Chang Y. C., Chang L. L., Esaki L., Appl. Phys. Lett. 47, 1324 (1985). (10.1063/1.96268) / Appl. Phys. Lett. by Chang Y. C. (1985)
  26. Gõni A. R., et al., ibid. 61, 1956 (1992). / ibid. by Gõni A. R. (1992)
  27. 10.1103/PhysRevLett.71.4071
  28. Someya T., Akiyama H., Sakaki H., ibid. 74, 3664 (1995); (10.1103/PhysRevLett.74.3664) / ibid. by Someya T. (1995)
  29. ; ibid. 76 2965 (1996). (10.1103/PhysRevLett.76.2965)
  30. W. Wegscheider G. Schedelbeck G. Abstreiter M. Rother M. Bichler ibid. 79 1917 (1997). (10.1103/PhysRevLett.79.1917)
  31. We thank A. Zrenner for helpful discussions. Supported by the Deutsche Forschungsgemeinschaft in the framework of SFB 348 and the Bundesministerium für Bildung Wissenschaft Forschung und Technologie through contract 01 BM 630/1.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:39 a.m.)
Deposited 1 year, 7 months ago (Jan. 12, 2024, 10:01 p.m.)
Indexed 5 days, 17 hours ago (Aug. 23, 2025, 9:31 p.m.)
Issued 27 years, 8 months ago (Dec. 5, 1997)
Published 27 years, 8 months ago (Dec. 5, 1997)
Published Print 27 years, 8 months ago (Dec. 5, 1997)
Funders 0

None

@article{Schedelbeck_1997, title={Coupled Quantum Dots Fabricated by Cleaved Edge Overgrowth: From Artificial Atoms to Molecules}, volume={278}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.278.5344.1792}, DOI={10.1126/science.278.5344.1792}, number={5344}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Schedelbeck, Gert and Wegscheider, Werner and Bichler, Max and Abstreiter, Gerhard}, year={1997}, month=dec, pages={1792–1795} }