Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Methyl–coenzyme M reductase (MCR), the enzyme responsible for the microbial formation of methane, is a 300-kilodalton protein organized as a hexamer in an α 2 β 2 γ 2 arrangement. The crystal structure of the enzyme from Methanobacterium thermoautotrophicum , determined at 1.45 angstrom resolution for the inactive enzyme state MCR ox1-silent , reveals that two molecules of the nickel porphinoid coenzyme F 430 are embedded between the subunits α, α′, β, and γ and α′, α, β′, and γ′, forming two identical active sites. Each site is accessible for the substrate methyl–coenzyme M through a narrow channel locked after binding of the second substrate coenzyme B. Together with a second structurally characterized enzyme state (MCR silent ) containing the heterodisulfide of coenzymes M and B, a reaction mechanism is proposed that uses a radical intermediate and a nickel organic compound.

Bibliography

Ermler, U., Grabarse, W., Shima, S., Goubeaud, M., & Thauer, R. K. (1997). Crystal Structure of Methyl-Coenzyme M Reductase: The Key Enzyme of Biological Methane Formation. Science, 278(5342), 1457–1462.

Authors 5
  1. Ulrich Ermler (first)
  2. Wolfgang Grabarse (additional)
  3. Seigo Shima (additional)
  4. Marcel Goubeaud (additional)
  5. Rudolf K. Thauer (additional)
References 51 Referenced 521
  1. Wolfe R. S., Annu. Rev. Microbiol. 45, 1 (1991). (10.1146/annurev.mi.45.100191.000245) / Annu. Rev. Microbiol. by Wolfe R. S. (1991)
  2. R. K. Thauer Antonie Leeuwenhoek 71 21 (1997). (10.1023/A:1000149705588)
  3. Hogan K. B., Hoffman J. S., Thompson A. M., Nature 354, 181 (1991). (10.1038/354181a0) / Nature by Hogan K. B. (1991)
  4. Ellefson W. L., Wolfe R. S., J. Biol. Chem. 256, 4259 (1981). (10.1016/S0021-9258(19)69427-5) / J. Biol. Chem. by Ellefson W. L. (1981)
  5. Pfaltz A., et al., Helv. Chim. Acta 65, 828 (1982); (10.1002/hlca.19820650320) / Helv. Chim. Acta by Pfaltz A. (1982)
  6. Färber G., et al., ibid. 74, 697 (1991). / ibid. by Färber G. (1991)
  7. Albracht S. P. J., et al., Biochim. Biophys. Acta 955, 86 (1988). (10.1016/0167-4838(88)90182-3) / Biochim. Biophys. Acta by Albracht S. P. J. (1988)
  8. Hartzell P. L., Donnelly M. J., Wolfe R. S., J. Biol. Chem. 262, 5581 (1987). (10.1016/S0021-9258(18)45612-8) / J. Biol. Chem. by Hartzell P. L. (1987)
  9. Noll K. M., Wolfe R. S., Biochem. Biophys. Res. Commun. 139, 889 (1986). (10.1016/S0006-291X(86)80261-3) / Biochem. Biophys. Res. Commun. by Noll K. M. (1986)
  10. Rouvière P. E., Wolfe R. S., J. Bacteriol. 171, 4556 (1989). (10.1128/jb.171.9.4556-4562.1989) / J. Bacteriol. by Rouvière P. E. (1989)
  11. Rospert S., Böcher R., Albracht S. P. J., Thauer R. K., FEBS Lett. 291, 371 (1991). (10.1016/0014-5793(91)81323-Z) / FEBS Lett. by Rospert S. (1991)
  12. 10.1111/j.1432-1033.1997.00110.x
  13. Shima S., Goubeaud M., Vinzenz D., Thauer R. K., Ermler U., J. Biochem. 121, 829 (1997). (10.1093/oxfordjournals.jbchem.a021660) / J. Biochem. by Shima S. (1997)
  14. The small diameter of the channel prevents the bulky F 430 from entering methyl-CoM reductase in the hexameric state and suggests an association to one of the subunits before oligomerization (26).
  15. R. A. Scott P. L. Hartzell R. S. Wolfe J. LeGall S. P. Cramer in Frontiers of Bioinorganic Chemistry A. V. Xavier Ed. (VCH New York 1986) pp. 20–26.
  16. Nolling J., et al., Int. J. Syst. Bacteriol. 46, 1170 (1996). (10.1099/00207713-46-4-1170) / Int. J. Syst. Bacteriol. by Nolling J. (1996)
  17. Methyl-CoM must therefore enter the channel before CoB to attain its binding site which is consistent with the ordered ternary complex kinetic mechanism displayed by the enzyme (27).
  18. Coenzyme B was found to be unable to penetrate the 30 Å long channel far enough so that its thiol group at the end of a long aliphatic arm can reach the Ni atom of coenzyme F 430 at the apex of the channel. The distance of 8.7 Å between the sulfur and the Ni atoms makes a Ni-S-CoB intermediate in the catalytic cycle as has been proposed (18) unlikely. In this respect it is of interest that CoB homologs with a (CH 2 ) 5 or (CH 2 ) 7 rather than a (CH 2 ) 6 aliphatic arm were shown to be inhibitory (28).
  19. Berkessel A., Bioorg. Chem. 19, 101 (1991). (10.1016/0045-2068(91)90047-S) / Bioorg. Chem. by Berkessel A. (1991)
  20. B. Jaun in Metal Ions in Biological Systems H. Siegel and A. Siegel Eds. (Dekker New York 1993) vol. 29 pp. 287–337.
  21. ___, Helv. Chim. Acta 73, 2209 (1990). (10.1002/hlca.19900730818) / Helv. Chim. Acta by ___ (1990)
  22. 10.1038/350087a0
  23. Picot D., Loll P. J., Garavito R. M., ibid. 367, 243 (1994). / ibid. by Picot D. (1994)
  24. 10.1016/S0969-2126(96)00037-8
  25. Lin S.-K., Jaun B., Helv. Chim. Acta 74, 1725 (1991). (10.1002/hlca.19910740814) / Helv. Chim. Acta by Lin S.-K. (1991)
  26. ___, ibid. 75, 1478 (1992). / ibid. by ___ (1992)
  27. Hartzell P. L., Wolfe R. S., Proc. Natl. Acad. Sci. U.S.A. 83, 6726 (1986). (10.1073/pnas.83.18.6726) / Proc. Natl. Acad. Sci. U.S.A. by Hartzell P. L. (1986)
  28. Bonacker L. G., Baudner S., Mörschel E., Böcher R., Thauer R. K., Eur. J. Biochem. 217, 587 (1993). (10.1111/j.1432-1033.1993.tb18281.x) / Eur. J. Biochem. by Bonacker L. G. (1993)
  29. Ellermann J., Hedderich R., Böcher R., Thauer R. K., ibid. 172, 669 (1988). / ibid. by Ellermann J. (1988)
  30. Ahn Y., Krzycki J. A., Floss H. G., J. Am. Chem. Soc. 113, 4700 (1991). (10.1021/ja00012a059) / J. Am. Chem. Soc. by Ahn Y. (1991)
  31. A. G. W. Leslie ESF/CCP4 Newsl. Protein Crystallogr. 26 83 (1992).
  32. Z. Otwinowski in Data Collection and Processing L. Sawyer N. Issacs S. Bailey Eds. (Daresbury Laboratory Warrington UK 1993) pp. 56–62.
  33. Collaborative Computational Project Number 4 Acta Crystallogr. D 50 760 (1994). (10.1107/S0907444994003112)
  34. G. H. Sheldrick in Proceedings of the CCP4 Study Weekend W. Wolf P. R. Evans A. G. W. Leslie Eds. (Daresbury Laboratory Warrington UK 1991) pp. 23–38.
  35. Z. Otwinowsky in ibid. pp. 80–86.
  36. K. D. Cowtan ESF/CCP4 Newsl. Protein Crystallogr. 31 83 (1994). (10.1145/190670.317009)
  37. G. A. Kleywegt and T. A. Jones in Proceedings of the CCP4 Study Weekend S. Bailey R. Hubbard D. Waller Eds. (Daresbury Laboratory Warrington UK 1994) pp. 59–66.
  38. Bokranz M., Bäumner G., Allmansberger R., Ankel-Fuchs D., Klein A., J. Bacteriol. 170, 568 (1988). (10.1128/jb.170.2.568-577.1988) / J. Bacteriol. by Bokranz M. (1988)
  39. 10.1107/S0108767390010224
  40. A. T. Brünger X-PLOR Manual Version 3.1. (Yale University New Haven CT 1992).
  41. 10.1002/bip.360221211
  42. Orengo C. A., Thornton J. M., Structure 1, 105 (1993). (10.1016/0969-2126(93)90026-D) / Structure by Orengo C. A. (1993)
  43. Ermler U., Merckel M. C., Thauer R. K., Shima S., ibid. 5, 635 (1997). / ibid. by Ermler U. (1997)
  44. 10.1006/jmbi.1993.1489
  45. Choe S., et al., Nature 357, 216 (1992). (10.1038/357216a0) / Nature by Choe S. (1992)
  46. 10.1107/S0021889891004399
  47. E. A. Merrit and M. E. P. Murphy Acta Crystallogr. D 50 869 (1994). (10.1107/S0907444994006396)
  48. Nicholls A., Bharadwaj R., Honig B., Biophys. J. 64, 166 (1993). / Biophys. J. by Nicholls A. (1993)
  49. 10.1016/0263-7855(93)87009-T
  50. One could hypothesize an alternative reaction mechanism involving a transient methyl radical intermediate which might account for the presumed methylation of His 257 Arg 271 Gln 400 and Cys 452 . Such a mechanism is not excluded by the finding that methyl-CoM reduction to methane mainly proceeds with inversion of the stereo configuration (29).
  51. We thank D. Vinzenz for crystallization H. Michel for generous support and for reading the manuscript K. Diederichs for reading the manuscript C. Kratky for providing us with coordinates of coenzyme F 430 analogs B. Jaun for discussions and the staff of the Max-Planck beamline at the Deutsches Elektronensynchrotron Hamburg for help during data collection. The cartoon in Fig. 6 was suggested by R. Cammack (King's College London). The coordinates of the MCR ox1-silent structure will be deposited in the Protein Data Bank with the accession number 1mro.
Dates
Type When
Created 23 years ago (July 27, 2002, 5:45 a.m.)
Deposited 1 year, 7 months ago (Jan. 12, 2024, 11:47 p.m.)
Indexed 1 week, 3 days ago (Aug. 12, 2025, 5:54 p.m.)
Issued 27 years, 9 months ago (Nov. 21, 1997)
Published 27 years, 9 months ago (Nov. 21, 1997)
Published Print 27 years, 9 months ago (Nov. 21, 1997)
Funders 0

None

@article{Ermler_1997, title={Crystal Structure of Methyl-Coenzyme M Reductase: The Key Enzyme of Biological Methane Formation}, volume={278}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.278.5342.1457}, DOI={10.1126/science.278.5342.1457}, number={5342}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Ermler, Ulrich and Grabarse, Wolfgang and Shima, Seigo and Goubeaud, Marcel and Thauer, Rudolf K.}, year={1997}, month=nov, pages={1457–1462} }