Crossref
journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract
Resonant Raman and nuclear magnetic resonance spectroscopies from single gallium arsenide quantum dots are demonstrated. The nuclei were probed through changes in the optical spectra of the quantum dot exciton arising from exciton-nuclear interactions. This approach allowed the application of optical spectroscopy with its extremely high sensitivity and selectivity. The experiments had a lateral spatial resolution of about 10 nanometers and probe a volume that was five orders of magnitude smaller than that of previous semiconductor nuclear spectroscopic studies.
References
34
Referenced
154
10.1126/science.264.5166.1740
-
Brunner K., Abstreiter G., Bohm G., Trankle G., Weimann G., Phys. Rev. Lett. 73, 1138 (1994);
(
10.1103/PhysRevLett.73.1138
) / Phys. Rev. Lett. by Brunner K. (1994) -
Zrenner A., et al., ibid. 72, 3382 (1994);
(
10.1103/PhysRevLett.72.3382
) / ibid. by Zrenner A. (1994) -
Heller W., Bockelmann U., Phys. Rev. B 55, R4871 (1997).
(
10.1103/PhysRevB.55.R4871
) / Phys. Rev. B by Heller W. (1997) -
Gammon D., Snow E. S., Katzer D. S., Appl. Phys. Lett. 67, 2391 (1995).
(
10.1063/1.114557
) / Appl. Phys. Lett. by Gammon D. (1995) 10.1126/science.273.5271.87
-
___ Phys. Rev. Lett. 76 3005 (1996).
(
10.1103/PhysRevLett.76.3005
) - S. W. Brown
-
Kennedy T. A., Gammon D., Snow E. S., Phys. Rev B 54, R17339 (1996).
(
10.1103/PhysRevB.54.R17339
) / Phys. Rev B by Kennedy T. A. (1996) -
Nirmal M., et al., Nature 383, 802 (1996);
(
10.1038/383802a0
) / Nature by Nirmal M. (1996) -
Empedocles S. A., Norris D. J., Bawendi M. G., Phys. Rev. Lett. 77, 3873 (1996);
(
10.1103/PhysRevLett.77.3873
) / Phys. Rev. Lett. by Empedocles S. A. (1996) -
Blanton S. A., Hines M. A., Guyot-Sionnest P., Appl. Phys. Lett. 69, 3905 (1996);
(
10.1063/1.117565
) / Appl. Phys. Lett. by Blanton S. A. (1996) - ; Al.
-
Efros L., Rosen M., Phys. Rev. Lett. 78, 1110 (1997).
(
10.1103/PhysRevLett.78.1110
) / Phys. Rev. Lett. by Efros L. (1997) 10.1126/science.268.5216.1457
- Nie S., Emory S. R., ibid. 275, 1102 (1997); / ibid. by Nie S. (1997)
10.1016/S0009-2614(97)00073-0
- For a review see B. Jusserand and M. Cardona in Light Scattering in Solids V M. Cardona and G. Guntherodt Eds. (Springer-Verlag Heidelberg 1989) pp. 49–152.
- For a review see D. Paget and V. L. Berkovits in Optical Orientation F. Meier and B. P. Zakharchenya Eds. (North-Holland New York 1984) chap. 9.
- We estimate 0.01 QDs μm −2 μeV −1 from the PL spectra at small apertures. This density gives about 300 QDs within the resonance linewidth in a 25-μm aperture.
-
Gammon D., Shanabrook B. V., Katzer D. S., Phys. Rev. Lett. 67, 1547 (1991).
(
10.1103/PhysRevLett.67.1547
) / Phys. Rev. Lett. by Gammon D. (1991) - There is convincing evidence that the structure at energies less than that of the LO 2 peak is primarily due to interface phonons mixed with confined phonons [
-
Shields A. J., Chamberlain M. P., Cardona M., Eberl K., Phys. Rev. B 51, 17728 (1995)].
(
10.1103/PhysRevB.51.17728
) / Phys. Rev. B by Shields A. J. (1995) - The exciton is composed of an electron and a heavy hole each of which has a spin degeneracy of 2. Of the four resulting combinations only two are dipole-allowed and absorb or emit light. See for example
-
van Kesteren H. W., Cosman E. C., van der Poel W. A. J. A., Foxon C. T., Phys. Rev. B 41, 5283 (1990).
(
10.1103/PhysRevB.41.5283
) / Phys. Rev. B by van Kesteren H. W. (1990) - The longitudinal field must be larger than the dipole fields from neighboring nuclei (5 G) and large enough such that the magnetic Zeeman energy is greater than fine structure splitting arising from deviations from cylindrical symmetry (0.2 T) (4 5).
- In the NMR measurements the laser was tuned to the beginning of the 2D continuum about 10 meV above the QD spectral lines; therefore a number of QDs were pumped simultaneously. The PL however probes individual QDs through the contact hyperfine interaction which is a local interaction (9).
-
G. P. Flinn R. T. Harley M. J. Snelling A. C. Tropper T. M. Kerr Semicond. Sci. Technol. 5 533 (1990);
(
10.1088/0268-1242/5/6/012
) -
Marohn J. A., et al., Phys. Rev. Lett. 75, 1364 (1995);
(
10.1103/PhysRevLett.75.1364
) / Phys. Rev. Lett. by Marohn J. A. (1995) -
Barrett S. E., Tycko R., Pfeiffer L. N., West K. W., ibid. 72, 1368 (1994);
(
10.1103/PhysRevLett.72.1368
) / ibid. by Barrett S. E. (1994) -
Krapf M., Denninger G., Pascher H., Weimann G., Schlapp W., Solid State Commun. 78, 459 (1991).
(
10.1016/0038-1098(91)90704-Y
) / Solid State Commun. by Krapf M. (1991) -
Hessmer R., et al., Phys. Rev. B 46, 4071 (1992).
(
10.1103/PhysRevB.46.4071
) / Phys. Rev. B by Hessmer R. (1992) -
Jahncke C. L., Paesler M. A., Hallen H. D., Appl. Phys. Lett. 67, 2483 (1995).
(
10.1063/1.114615
) / Appl. Phys. Lett. by Jahncke C. L. (1995) - We gratefully acknowledge extended discussions with B. V. Shanabrook Al. L. Efros M. Rosen and J. Yesinowski. This work was supported in part by the Office of Naval Research.
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 27, 2002, 5:37 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 12, 2024, 11:35 p.m.) |
Indexed | 2 months, 3 weeks ago (June 5, 2025, 3:44 a.m.) |
Issued | 28 years, 1 month ago (July 4, 1997) |
Published | 28 years, 1 month ago (July 4, 1997) |
Published Print | 28 years, 1 month ago (July 4, 1997) |