Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Fresh fracture surfaces of the martian meteorite ALH84001 contain abundant polycyclic aromatic hydrocarbons (PAHs). These fresh fracture surfaces also display carbonate globules. Contamination studies suggest that the PAHs are indigenous to the meteorite. High-resolution scanning and transmission electron microscopy study of surface textures and internal structures of selected carbonate globules show that the globules contain fine-grained, secondary phases of single-domain magnetite and iron sulfides. The carbonate globules are similar in texture and size to some terrestrial bacterially induced carbonate precipitates. Although inorganic formation is possible, formation of the globules by biogenic processes could explain many of the observed features, including the PAHs. The PAHs, the carbonate globules, and their associated secondary mineral phases and textures could thus be fossil remains of a past martian biota.

Bibliography

McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., & Zare, R. N. (1996). Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273(5277), 924–930.

Authors 9
  1. David S. McKay (first)
  2. Everett K. Gibson (additional)
  3. Kathie L. Thomas-Keprta (additional)
  4. Hojatollah Vali (additional)
  5. Christopher S. Romanek (additional)
  6. Simon J. Clemett (additional)
  7. Xavier D. F. Chillier (additional)
  8. Claude R. Maechling (additional)
  9. Richard N. Zare (additional)
References 88 Referenced 1,374
  1. Mazur P., et al., Space Sci. Rev. 22, 3 (1978); (10.1007/BF00215812) / Space Sci. Rev. by Mazur P. (1978)
  2. Klein H. P., Eos 76, 334 (1995). / Eos by Klein H. P. (1995)
  3. 10.1016/0019-1035(84)90026-5
  4. 10.1126/science.271.5254.1387
  5. 10.1111/j.1945-5100.1994.tb01092.x
  6. Bogard and , Johnson , [Science 221, 651 (1983)], , Becker and , Pepin , [Earth Planet. Sci. Lett. 69, 225 (1983)], and , Marti , et al., [Science 267, 1981 (1995)] / Earth Planet. Sci. Lett. / Science by Bogard (1983)
  7. 10.1111/j.1945-5100.1994.tb00673.x
  8. Treiman A. H., ibid. 30, 294 (1995). / ibid. by Treiman A. H. (1995)
  9. Jagoutz E., Sorowka A., Vogel J. D., Wanke H., ibid. 29, 478 (1994); / ibid. by Jagoutz E. (1994)
  10. Nyquist L. E. , Bansal B. M. , Wiesmann H. , Shih C. Y., Lunar Planet. Sci. 26, 1065 (1995). / Lunar Planet. Sci. by Nyquist L. E. (1995)
  11. Ash R. D., Knott S. F., Turner G., Nature 380, 57 (1996). (10.1038/380057a0) / Nature by Ash R. D. (1996)
  12. Wentworth S. J., Gooding J. L., Lunar Planet. Sci. 26, 1489 (1995). / Lunar Planet. Sci. by Wentworth S. J. (1995)
  13. Thomas K. L., et al., ibid.: 1409. / ibid. by Thomas K. L.
  14. Knott S. K., Ash R. D., Turner G., ibid.: 765. / ibid. by Knott S. K.
  15. 10.1038/382049a0
  16. Romanek C. S., et al., ibid. 372, 655 (1994). / ibid. by Romanek C. S. (1994)
  17. Gooding J. L., Icarus 99, 28 (1992). (10.1016/0019-1035(92)90168-7) / Icarus by Gooding J. L. (1992)
  18. Grady M. M., Wright I. P., Swart P. K., Pillinger C. T., Geochim. Cosmochim. Acta 52, 2855 (1988). (10.1016/0016-7037(88)90152-4) / Geochim. Cosmochim. Acta by Grady M. M. (1988)
  19. Jull A. J. T., Eastoe C. J., Xue S., Herzog G. F., Meteoritics 30, 311 (1995). (10.1111/j.1945-5100.1995.tb01129.x) / Meteoritics by Jull A. J. T. (1995)
  20. Carr R. H., Grady M. M., Wright I. P., Pillinger C. T., Nature 314, 248 (1985); (10.1038/314248a0) / Nature by Carr R. H. (1985)
  21. Wright I. P. , Hartmetz C. P. , Pillinger C. T., J. Geophys. Res. 98, 3477 (1993). (10.1029/92JE02056) / J. Geophys. Res. by Wright I. P. (1993)
  22. Jull A. J. T., Cloudt S., Eastoe C. J., Lunar Planet. Inst. Tech. Rep. 96-01, part 1 (Lunar and Planetary Institute Houston, TX 1996 22; / Lunar Planet. Inst. Tech. Rep. 96-01 by Jull A. J. T. (1996)
  23. Hudson J. D., J. Geol. Soc. London 133, 637 (1977). (10.1144/gsjgs.133.6.0637) / J. Geol. Soc. London by Hudson J. D. (1977)
  24. Clark I. D., Lauriol B., Chem. Geol. 102, 217 (1992); (10.1016/0009-2541(92)90157-Z) / Chem. Geol. by Clark I. D. (1992)
  25. Nakai N. , Wada H. , Iyosu Y. K. , Takimoto M., Geochem. J. 9, 7 (1975). (10.2343/geochemj.9.7) / Geochem. J. by Nakai N. (1975)
  26. Murata K. J., Friedman I., Madsen B. M., U.S. Geol. Surv. Prof. Pap. 614B, 1 (1969); / U.S. Geol. Surv. Prof. Pap. by Murata K. J. (1969)
  27. Martini A. M. , Walter L. M. , Budai J. M. , W. Ku T. C., Geol. Soc. Am. Abstr. Prog. 27, 292 (1995); / Geol. Soc. Am. Abstr. Prog. by Martini A. M. (1995)
  28. Claypool G. E. and , Kaplan I. R. in Natural Gases in Marine Sediments, , Kaplan I. R. Ed. Plenum, New York, 1974, pp. 99-139. (10.1007/978-1-4684-2757-8_8) / Natural Gases in Marine Sediments by Claypool G. E. (1974)
  29. 10.1126/science.270.5235.450
  30. Prior to landing in the Antarctic ice field this meteorite was in space for about 16 million years based on cosmic ray exposure data;
  31. [Bogard D. D., Lunar Planet. Sci. 26, 143 (1995)]. / Lunar Planet. Sci. by [Bogard D. D. (1995)
  32. μL2MS was used to analyze fresh fractured samples of ALH84001 for the presence of PAHs. The μL2MS instrument is capable of the simultaneous measurement of all PAHs present on a sample surface to a spatial resolution of 40 μm and detection limits are in the sub-attomole (>107 molecules) range (1 amol = 10−18 mol).
  33. 10.1126/science.262.5134.721
  34. Wing M. R., Bada J. L., Geochim. Cosmochim. Acta 55, 2937 (1991). (10.1016/0016-7037(91)90458-H) / Geochim. Cosmochim. Acta by Wing M. R. (1991)
  35. PAH concentration is estimated from comparison of the averaged spectra of interior fracture surfaces of ALH84001 with known terrestrial standards and the Murchison (CM2) meteorite matrix. In the case of Murchison (CM2) the total concentration of PAHs has been independently measured to be in the range of 18 to 28 parts per million;[;
  36. Pering K. L. and , Ponnamperuma C., Science 173, 237 (1971)]. The average PAH spectrum of ALH84001 used in this estimate was generated from the average of ∼4000 single-shot spectra acquired from three separate fracture surfaces encompassing an analyzed surface area of ∼2 mm2, representing regions both rich and poor in PAHs. (10.1126/science.173.3993.237) / Science by Pering K. L. (1971)
  37. At a single laser ionization wavelength μL2MS is unable to distinguish between structural isomers; however because different isomers have different photoionization cross sections mass assignments are based on the most probable isomer. In the case of masses 178 and 202 the possible isomer combinations are phenanthrene or anthracene and pyrene or fluoranthene. At the photoionization wavelength used in this study (266 nm) the μL2MS instrument is ∼19 times as sensitive to phenanthrene as to anthracene and ∼23 times as sensitive to pyrene as to fluoranthene [R. Zenobi and R. N. Zare in Advances in Multiphoton Processes and Spectroscopy S. H. Lin Ed. (World Scientific Singapore 1991) vol. 7 pp. 1-167]. Hence masses 178 and 202 are assigned to phenanthrene and pyrene. In the case of higher masses more structural isomers exist and assignments are based on those PAHs known to have high cross sections from comparisons with standards.
  38. Kawamura K., Suzuki I., Naturwissenschaften 81, 502 (1994). (10.1007/BF01132682) / Naturwissenschaften by Kawamura K. (1994)
  39. Youngblood W. W., Blumer M., Geochim. Cosmochim. Acta 39, 1303 (1975); (10.1016/0016-7037(75)90137-4) / Geochim. Cosmochim. Acta by Youngblood W. W. (1975)
  40. Wakeham S. T. , Schaffner C. , Giger W., ibid. 44, 403 (1980); (10.1103/PhysRevLett.44.403) / ibid. by Wakeham S. T. (1980)
  41. LaFlamme R. E. and , Hites R. A., ibid. 42, 289 (1978); / ibid. by LaFlamme R. E. (1978)
  42. Jensen T. E. and , Hites R. A., Anal. Chem. 55, 594 (1983). (10.1021/ac00255a003) / Anal. Chem. by Jensen T. E. (1983)
  43. Clemett S. J., Maechling C. R., Zare R. N., Alexander C. M. O. D., Lunar Planet. Sci. 23, 233 (1992); / Lunar Planet. Sci. by Clemett S. J. (1992)
  44. Kovalenko L. J. , et al.,Anal. Chem. 64, 682 (1992). (10.1021/ac00030a021) / Anal. Chem. by Kovalenko L. J. (1992)
  45. The interiors of stony meteorites are not heated above 100° to 120°C during passage through the Earth's atmosphere. For example, in the CM carbonaceous chondrite Murchison, amino acids have been found by Kvenvolden et al. [Nature 228, 923 (1970)]. If temperatures had been above 120°C, amino acids would have degraded. / Nature / et al. (1970)
  46. Sources of laboratory contamination fall into three categories: sample handling laboratory air and virtual leaks (that is sources of PAHs inside the μL2MS vacuum chamber). Possible contamination during sample preparation was minimized by performing nearly all sample preparation at the NASA-JSC meteorite curation facility. In cases where subsequent sample handling was required at Stanford all manipulation was performed in less than 15 minutes using only stainless steel tools previously rinsed and ultrasonicated in methanol and acetone. Dust-free gloves were worn at all times and work was performed on a clean aluminum foil surface. To quantify airborne contamination from exposure to laboratory air two clean quartz discs were exposed to ambient laboratory environments both at NASA-JSC and Stanford. Each disc received an exposure typical of that experienced subsequently by samples of ALH84001 during sample preparation. No PAHs were observed on either quartz disk at or above detection limits. Because contamination can depend on the physical characteristics of the individual sample (for example a porous material will likely give a larger contamination signal than a nonporous one) additional contamination studies have been previously conducted at Stanford [see (29)]. Briefly samples of the meteoritic acid residues of Barwell (L6) and Bishunpur (L3.1) were exposed to laboratory air for 1 and 4 days respectively. Barwell (L6) is known to contain no indigenous PAHs and none were observed on the exposed sample. Bishunpur (L3.1) in contrast contains a rich suite of PAHs but no discernible differences in signal intensities were observed between exposed and unexposed samples. To test for contamination from virtual leaks the μL2MS instrument was periodically checked using samples of Murchison (CM2) meteorite matrix whose PAH distribution has been previously well characterized. No variations in either signal intensity or distribution of PAHs were observed for μL2MS instrument exposure times in excess of 3 days. No sample of ALH84001 was in the instrument for longer than 6 hours. The μL2MS vacuum chamber is pumped by an oil-free system: two turbomolecular pumps and a liquid nitrogen-cooled cyropump.
  47. Thomas K. L., et al., Geochim. Cosmochim. Acta 59, 2797 , (1995). (10.1016/0016-7037(95)00174-X) / Geochim. Cosmochim. Acta by Thomas K. L. (1995)
  48. Clemett S. J., Messenger S., Chillier X. D. F., Gao X., Walker R. M., Zare R. N., Lunar Planet. Sci. 26, 229 (1996). / Lunar Planet. Sci. by Clemett S. J. (1996)
  49. Clemett S. J. thesis Stanford University (1996).
  50. Tissot B. P., Welte D. H., Petroleum Formation and Occurrence Springer New York 1978. (10.1007/978-3-642-96446-6) / Petroleum Formation and Occurrence by Tissot B. P. (1978)
  51. LaFlamme R. E., Hites R. A., Geochim. Cosmochim. Acta 42, 289 (1978); (10.1016/0016-7037(78)90182-5) / Geochim. Cosmochim. Acta by LaFlamme R. E. (1978)
  52. Wakeham S. G. , Schaffner C. , Giger W. ibid. 44, 415 (1980). / ibid. by Wakeham S. G. (1980)
  53. We removed the spheroid from a thin section with a micro-coring device embedded it in epoxy thin sectioned it using an ultramicrotome and analyzed it using a TEOL 2000FX TEM [technique described in (31)]. We made about 50 thin sections from the globule and the remaining carbonate globule was coated with evaporated carbon for conductivity (∼10 nm) and mapped with wavelength dispersive spectroscopy for major and minor elements using a Cameca SX 100 microprobe (Fig. 3).
  54. Stanjek H., Fassbinder J. W. E., Vali H., Wegele H., Graf W., Eur. J. Soil Sci. 45, 97 (1994). (10.1111/j.1365-2389.1994.tb00490.x) / Eur. J. Soil Sci. by Stanjek H. (1994)
  55. Maher B. A., Iron Biominerals , Frankel R. B., Blakemore R. P. Plenum New York 1991 179; (10.1007/978-1-4615-3810-3_13) / Iron Biominerals by Maher B. A. (1991)
  56. Taylor R. M. , Maher B. A. , Self P. G., Clay Miner. 22, 411 (1987). (10.1180/claymin.1987.022.4.05) / Clay Miner. by Taylor R. M. (1987)
  57. Machel H. G., Palaeomagnetic Applications in Hydrocarbon Exploration and Production , Turner P., Turner A. Geol. Soc. Spec. Publ. 98 Geological Society London 1995 9 29; R. M. Garrels and C. L. Christ, Solutions, Minerals and Equilibria (Freeman, Cooper, San Francisco, 1969). / Palaeomagnetic Applications in Hydrocarbon Exploration and Production by Machel H. G. (1995)
  58. Vali H., Kirschvink J. L., Nature 339, 203 (1989); (10.1038/339203a0) / Nature by Vali H. (1989)
  59. Vali H. , Forster O. , Amarantidis G. , Petersen N., Earth Planet. Sci. Lett. 86, 389 (1987). (10.1016/0012-821X(87)90235-4) / Earth Planet. Sci. Lett. by Vali H. (1987)
  60. Vali H., Kirschvink J. L., Iron Biominerals , Frankel R. B., Blakemore R. B. Plenum New York 1990 97 115; S. Mann, N. H. C. Sparks, R. B. Frankel, D. A. Bazylinski, H. W. Jannasch, Nature 343, 258 (1990); M. Farina, D. M. Esquivel, H. G. P. L. de Barros, ibid., p. 256; D. A. Bazylinski, B. R. Heywood, S. Mann, R. B. Frankel, ibid. 366, 218 (1993); A. Demitrac, in Magnetite Biomineralization and Magnetoreception, J. Kirschvink, D. S. Jones, B. J. McFadden, Eds. (Plenum, New York, 1985), pp. 625-645); R. B. Frankel and R. B. Blakemore, Eds., Iron Biomineralization (Plenum, New York, 1991). / Iron Biominerals by Vali H. (1990)
  61. Lovely D. R., Stolz J. F., Nord G. L., Phillips E. J. P., Nature 330, 252 (1987). (10.1038/330252a0) / Nature by Lovely D. R. (1987)
  62. Fortin D., Davis B., Southam G., Beveridge T. J., J. Indust. Microbiol. 14, 178 (1995). (10.1007/BF01569901) / J. Indust. Microbiol. by Fortin D. (1995)
  63. Kirschvink J. L., Chang S. B. R., Geology 12, 559 (1984). (10.1130/0091-7613(1984)12<559:UMIDSP>2.0.CO;2) / Geology by Kirschvink J. L. (1984)
  64. Blakemore R. P., Annu. Rev. Microbiol. 36, 217 (1982). (10.1146/annurev.mi.36.100182.001245) / Annu. Rev. Microbiol. by Blakemore R. P. (1982)
  65. Petersen N., von Dobeneck T., Vali H., Nature 320, 611 (1986); (10.1038/320611a0) / Nature by Petersen N. (1986)
  66. Fassbinder J. W. E. , Stanjek H. , Vali H., ibid. 343, 161 (1990). / ibid. by Fassbinder J. W. E. (1990)
  67. Chang S. R., Tolz J. F. S., Kirschvink J. L., Awramik S. M., Precambrian Res. 42, 305 (1989). (10.1016/0301-9268(89)90062-4) / Precambrian Res. by Chang S. R. (1989)
  68. Butler R. F., Banerjee S. K., J. Geophys. Res. 80, 4049 (1975). (10.1029/JB080i029p04049) / J. Geophys. Res. by Butler R. F. (1975)
  69. We handpicked small chips in a clean bench from our curatorial allocation of ALH84001. Most chips were from a region near the central part of the meteorite and away from the fusion crust although for comparison we also looked at chips containing some fusion crust. For high-resolution work we used an Au-Pd coating estimated to be ∼2 nm thick in most cases. On some samples we used a thin (<1 nm) coating about 10 s with our sputter coater; these samples usually showed charging effects and could not be used for highest resolution imaging. We more typically used 20 to 30 s. For backscatter and chemical mapping we used a carbon coat of about 5 to 10 nm thick. We monitored the possible artifacts from the coating using other reference samples or by looking at fresh mineral surfaces on ALH84001. We could also estimate relative coating thicknesses by the size of the Au and Pd peaks in the energy dispersive x-ray spectrum. For our heaviest coating a slight crazing texture from the coating is barely visible at a magnification of 50 000× on the cleanest fresh grain surfaces. The complex textures shown in most of the SEM photographs are not artifacts of the coating process but are the real texture of the sample. We used a JEOL 35 CF and a Philips SEM with a field emission gun (FEG) at the JSC. The JEOL and Philips SEMs are equipped respectively with a PGT and Link EDS system. We achieved about 2.0 nm resolution at 30kV. Some images were also taken at lower kV ranging from 1 to 10 kV. In most cases the chips were coated after handpicking with no further treatment. For comparison several chips were ultrasonically cleaned for a few seconds in liquid Freon before coating to remove adhering dust. Several samples were examined uncoated at low kV. We carbon-coated and examined all of the surfaces analyzed for PAHs only after the PAH analyses had been completed.
  70. Paquette J., Vali H., Mountjoy E. W., Am. Mineral. in press; J. Paquette, H. Vali, A. Mucci, Geochim. Cosmochim. Acta, in press. / Am. Mineral. by Paquette J.
  71. McBride E. F., Dane Picard M., Folk R. L., J. Sed. Res. A64, 535 (1994).see fig. 9. / J. Sed. Res. by McBride E. F. (1994)
  72. Gibson E. K., Wentworth S. J., McKay D. S., Proc. 13th Lunar Planet. Sci. Conf.; / Proc. 13th Lunar Planet. Sci. Conf. by Gibson E. K.
  73. Part 2, J. Geophys. Res. 88, suppl. A912 (1983); / J. Geophys. Res. (1983)
  74. Velbel M. A., Meteoritics 23, 151 (1988); (10.1111/j.1945-5100.1988.tb00910.x) / Meteoritics by Velbel M. A. (1988)
  75. Campbell I. B. and , Claridge G. G. C., Antarctica: Soils, Weathering Processes and Environment, Developments in Soil Science (Elsevier, Amsterdam, 1987), vol. 16. / Antarctica: Soils, Weathering Processes and Environment, Developments in Soil Science by Campbell I. B. (1987)
  76. Folk R. L., J. Sediment Petrol. 63, 990 (1993). / J. Sediment Petrol. by Folk R. L. (1993)
  77. Schopf J. W., Klein C., The Proterozoic Biosphere Cambridge Univ. Press New York 1992. (10.1017/CBO9780511601064) / The Proterozoic Biosphere by Schopf J. W. (1992)
  78. Contrary to the interpretations presented by Harvey and McSween (11) concerning the equilibrium partitioning of stable carbon isotopes on Mars δ13C values for carbonate and atmospheric CO2 are incompatible with a high-temperature origin. For the CaCO3-CO2 system solid carbonate is only enriched in 13C below about 200°C [;
  79. Chacko T. , Mayeda T. K. , Clayton R. N. , Goldsmith J. R., Geochim. Cosmochim. Acta 55, 2867 (1991); (10.1016/0016-7037(91)90452-B) / Geochim. Cosmochim. Acta by Chacko T. (1991)
  80. Romanek C. S. , Grossman E. L. , Morse J. W., ibid. 56, 419 (1992)]. Assuming the δ13C of ambient CO2 is 27 per mil (the value for trapped gases in the martian meteorite EETA79001) [; / ibid. by Romanek C. S. (1992)
  81. Harzmetz C. P. , Wright I. P. , Pillinger C. T. in Workshop on the Mars Surface and Atmosphere Through Time, R. M. Haberle et al., Eds. (Tech. Rep. 92-02, Lunar and Planetary Institute, Houston, TX, 1992), pp. 67-68], a δ13C of 42 per mil for carbonate in ALH84001 can only be explained by a precipitation temperature around 0°C. This temperature estimate is compatible with an independent range of precipitation temperatures (0° to 80°C) based on the δ18O of the same carbonates (12). If carbon isotopes are distributed heterogeneously on Mars in isolated reservoirs (for example, the crust and atmosphere), precipitation temperature estimates based on stable isotopes are relatively unconstrained. This is probably not the case, though, as other researchers [(3); / et al. / Workshop on the Mars Surface and Atmosphere Through Time by Harzmetz C. P.
  82. 10.1126/science.265.5168.86
  83. Jakosky B. M., Geophys. Res. Lett. 20, 1591 (1993)] have documented a link between crustal and atmospheric isotopic reservoirs on the planet. (10.1029/93GL01598) / Geophys. Res. Lett. by Jakosky B. M. (1993)
  84. Buczynsik C., Chafetz H. S., J. Sediment Petrol. 61, 226 (1991). also see Figs. 1D and 3, A and B. (10.1306/D42676DB-2B26-11D7-8648000102C1865D) / J. Sediment Petrol. by Buczynsik C. (1991)
  85. 10.1146/annurev.mi.48.100194.001523
  86. Hendry J. P., Sedimentology 40, 87 (1993). (10.1111/j.1365-3091.1993.tb01093.x) / Sedimentology by Hendry J. P. (1993)
  87. 10.1130/0091-7613(1990)018<0995:CPOGCA>2.3.CO;2
  88. We thank L. P. Keller V. Yang C. Le R. A. Socki M. F. McKay M. S. Gibson and S. R. Keprta for assistance; and R. Score and M. Lindstrom for their help in sample selection and preparation. The guidance of J. W. Schopf at an early stage of this study is appreciated. We also thank G. Horuchi L. Hulse L. L. Darrow D. Pierson and personnel from Building 37. The work was supported in part by NASA's Planetary Materials Program (D.S.M. and R.N.Z.) and the Exobiology Program (D.S.M.). Additional support from NASA-JSC Center Director's Discretionary Program (E.K.G.) is recognized. C.S.R. and H.V. acknowledge support from the National Research Council. X.D.F.C. acknowledges support from the Swiss National Science Foundation.
Dates
Type When
Created 18 years, 9 months ago (Oct. 27, 2006, 2:30 p.m.)
Deposited 1 year ago (Aug. 7, 2024, 7:34 a.m.)
Indexed 4 days, 6 hours ago (Aug. 21, 2025, 1:30 p.m.)
Issued 29 years ago (Aug. 16, 1996)
Published 29 years ago (Aug. 16, 1996)
Published Print 29 years ago (Aug. 16, 1996)
Funders 0

None

@article{McKay_1996, title={Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001}, volume={273}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.273.5277.924}, DOI={10.1126/science.273.5277.924}, number={5277}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={McKay, David S. and Gibson, Everett K. and Thomas-Keprta, Kathie L. and Vali, Hojatollah and Romanek, Christopher S. and Clemett, Simon J. and Chillier, Xavier D. F. and Maechling, Claude R. and Zare, Richard N.}, year={1996}, month=aug, pages={924–930} }