10.1126/science.1252319
Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

How to benchmark a quantum computer Quantum machines offer the possibility of performing certain computations much faster than their classical counterparts. However, how to define and measure quantum speedup is a topic of debate. Rønnow et al. describe methods for fairly evaluating the difference in computational power between classical and quantum processors. They define various types of quantum speedup and consider quantum processors that are designed to solve a specific class of problems. Science , this issue p. 420

Bibliography

Rønnow, T. F., Wang, Z., Job, J., Boixo, S., Isakov, S. V., Wecker, D., Martinis, J. M., Lidar, D. A., & Troyer, M. (2014). Defining and detecting quantum speedup. Science, 345(6195), 420–424.

Authors 9
  1. Troels F. Rønnow (first)
  2. Zhihui Wang (additional)
  3. Joshua Job (additional)
  4. Sergio Boixo (additional)
  5. Sergei V. Isakov (additional)
  6. David Wecker (additional)
  7. John M. Martinis (additional)
  8. Daniel A. Lidar (additional)
  9. Matthias Troyer (additional)
References 36 Referenced 454
  1. P. W. Shor in Proceedings 35th Annual Symposium on Foundations of Computer Science (IEEE New York 1994) pp. 124–134.
  2. 10.1007/BF02650179
  3. 10.1126/science.273.5278.1073
  4. 10.1145/8312.8317
  5. 10.1103/PhysRevLett.79.325
  6. 10.1137/S0097539796300933
  7. 10.1103/PhysRevA.88.022316
  8. 10.1103/PhysRevE.58.5355
  9. 10.1126/science.284.5415.779
  10. 10.1126/science.1057726
  11. 10.1126/science.220.4598.671
  12. 10.1103/PhysRevB.66.094203
  13. 10.1126/science.1068774
  14. 10.1088/0305-4470/15/10/028
  15. 10.1103/PhysRevB.82.024511
  16. 10.1088/0953-2048/23/6/065004
  17. 10.1088/0953-2048/23/10/105014
  18. 10.1038/nature10012
  19. 10.1038/nphys2900
  20. S. Boixo T. Albash F. M. Spedalieri N. Chancellor D. A. Lidar http://arxiv.org/abs/1212.1739 (2012).
  21. W. Vinci T. Albash A. Mishra P. A. Warburton D. A. Lidar http://arxiv.org/abs/1403.4228 (2014).
  22. J. A. Smolin G. Smith http://arxiv.org/abs/1305.4904 (2013).
  23. L. Wang T. F. Rønnow S. Boixo S. V. Isakov Z. Wang D. Wecker D. A. Lidar J. M. Martinis M. Troyer http://arxiv.org/abs/1305.5837 (2013).
  24. S. W. Shin G. Smith J. A. Smolin U. Vazirani http://arxiv.org/abs/1401.7087 (2014).
  25. 10.1007/s11128-010-0200-3
  26. 10.1103/PhysRevLett.109.050501
  27. 10.1103/PhysRevX.4.021008
  28. 10.1038/ncomms4243
  29. S. Isakov I. Zintchenko T. Rønnow M. Troyer http://arxiv.org/abs/1401.1084 (2014).
  30. 10.1007/BF01011918
  31. 10.1016/0010-4655(90)90186-5
  32. 10.1016/S0004-3702(99)00059-4
  33. 10.1103/PhysRevLett.93.207203
  34. C. C. McGeoch C. Wang in Proceedings of the ACM Conference on Computing Frontiers (ACM New York 2013) pp. XX–XX.
  35. 10.1103/PhysRevLett.95.250503
  36. S. Santra G. Quiroz G. V. Steeg D. A. Lidar http://arxiv.org/abs/1307.3931 (2013).
Dates
Type When
Created 11 years, 2 months ago (June 20, 2014, 12:53 a.m.)
Deposited 1 year, 7 months ago (Jan. 10, 2024, 3:21 p.m.)
Indexed 13 hours, 40 minutes ago (Aug. 28, 2025, 8:47 a.m.)
Issued 11 years, 1 month ago (July 25, 2014)
Published 11 years, 1 month ago (July 25, 2014)
Published Print 11 years, 1 month ago (July 25, 2014)
Funders 0

None

@article{R_nnow_2014, title={Defining and detecting quantum speedup}, volume={345}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1252319}, DOI={10.1126/science.1252319}, number={6195}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Rønnow, Troels F. and Wang, Zhihui and Job, Joshua and Boixo, Sergio and Isakov, Sergei V. and Wecker, David and Martinis, John M. and Lidar, Daniel A. and Troyer, Matthias}, year={2014}, month=jul, pages={420–424} }