Abstract
Graphene, Gapped and Butterflied The remarkable transport properties of graphene, such as the high electron mobility, make it a promising material for electronics. However, unlike semiconductors such as silicon, graphene's electronic structure lacks a band gap, and a transistor made out of graphene would not have an “off” state. Hunt et al. (p. 1427 , published online 16 May; see the Perspective by Fuhrer ) modulated the electronic properties of graphene by building a heterostructure consisting of a graphene flake resting on hexagonal boron nitride (hBN), which has the same honeycomb structure as graphene, but consists of alternating boron and nitrogen atoms instead of carbons. The natural mismatch between the graphene and hBN lattices led to a moire pattern with a large wavelength, causing the opening of a band gap, the formation of an elusive fractional quantum Hall state, and, at high magnetic fields, a fractal phenomenon in the electronic structure called the Hofstadter butterfly.
Bibliography
Hunt, B., Sanchez-Yamagishi, J. D., Young, A. F., Yankowitz, M., LeRoy, B. J., Watanabe, K., Taniguchi, T., Moon, P., Koshino, M., Jarillo-Herrero, P., & Ashoori, R. C. (2013). Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science, 340(6139), 1427â1430.
References
44
Referenced
1,477
-
R. Tsu Superlattice to Nanoelectronics (Elsevier London 2010).
(
10.1016/B978-0-08-096813-1.00001-1
) 10.1103/PhysRevB.76.073103
10.1103/PhysRevB.76.073103
10.1103/PhysRevB.76.073103
10.1038/nnano.2010.89
10.1126/science.1144216
10.1038/nnano.2010.89
10.1038/nphys2272
10.1103/PhysRevB.76.073103
10.1038/nphys1736
10.1038/nphys2114
10.1103/PhysRevB.76.073103
10.1103/PhysRevB.87.245408
-
C. R. Dean et al . Nature 497 598 (2013).
(
10.1038/nature12186
) -
L. A. Ponomarenko et al . Nature 497 594 (2013).
(
10.1038/nature12187
) - Azbel M. Y., Energy spectrum of a conduction electron in a magnetic field. Sov. Phys. JETP 19, 634 (1964). / Sov. Phys. JETP / Energy spectrum of a conduction electron in a magnetic field by Azbel M. Y. (1964)
10.1103/PhysRevB.14.2239
10.1088/0268-1242/11/11S/022
10.1103/PhysRevLett.86.147
10.1103/PhysRevLett.68.3088
10.1103/PhysRevLett.68.3088
10.1063/1.99649
10.1038/nmat1849
10.1038/nphys2307
10.1038/nphys2007
10.1126/science.1224784
10.1103/PhysRevB.74.235417
10.1103/PhysRevLett.97.126801
10.1103/PhysRevLett.97.126801
10.1103/PhysRevB.84.195414
- J. C. W. Song A. V. Shytov L. S. Levitov http://arxiv.org/abs/1212.6759 (2012).
10.1103/PhysRevB.28.6713
10.1103/PhysRevB.28.6713
10.1063/1.3665405
10.1103/RevModPhys.83.407
10.1088/0022-3719/15/36/006
10.1103/PhysRevB.31.6597
10.1103/PhysRevB.31.6597
10.1103/PhysRevB.31.6597
10.1103/PhysRevB.31.6597
10.1103/PhysRevB.31.6597
10.1038/nphys1406
-
B. I. Shklovskii A. L. Efros Electronic Properties of Doped Semiconductors (Springer New York 1984).
(
10.1007/978-3-662-02403-4
) 10.1103/PhysRevB.31.6597
Dates
Type | When |
---|---|
Created | 12 years, 3 months ago (May 17, 2013, 12:53 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 10, 2024, 9:36 a.m.) |
Indexed | 2 days, 12 hours ago (Aug. 30, 2025, 12:59 p.m.) |
Issued | 12 years, 2 months ago (June 21, 2013) |
Published | 12 years, 2 months ago (June 21, 2013) |
Published Print | 12 years, 2 months ago (June 21, 2013) |
@article{Hunt_2013, title={Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure}, volume={340}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1237240}, DOI={10.1126/science.1237240}, number={6139}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Hunt, B. and Sanchez-Yamagishi, J. D. and Young, A. F. and Yankowitz, M. and LeRoy, B. J. and Watanabe, K. and Taniguchi, T. and Moon, P. and Koshino, M. and Jarillo-Herrero, P. and Ashoori, R. C.}, year={2013}, month=jun, pages={1427–1430} }