Abstract
Background Metal-organic frameworks (MOFs) are made by linking inorganic and organic units by strong bonds (reticular synthesis). The flexibility with which the constituents’ geometry, size, and functionality can be varied has led to more than 20,000 different MOFs being reported and studied within the past decade. The organic units are ditopic or polytopic organic carboxylates (and other similar negatively charged molecules), which, when linked to metal-containing units, yield architecturally robust crystalline MOF structures with a typical porosity of greater than 50% of the MOF crystal volume. The surface area values of such MOFs typically range from 1000 to 10,000 m 2 /g, thus exceeding those of traditional porous materials such as zeolites and carbons. To date, MOFs with permanent porosity are more extensive in their variety and multiplicity than any other class of porous materials. These aspects have made MOFs ideal candidates for storage of fuels (hydrogen and methane), capture of carbon dioxide, and catalysis applications, to mention a few. Advances The ability to vary the size and nature of MOF structures without changing their underlying topology gave rise to the isoreticular principle and its application in making MOFs with the largest pore aperture (98 Å) and lowest density (0.13 g/cm 3 ). This has allowed for the selective inclusion of large molecules (e.g., vitamin B 12 ) and proteins (e.g., green fluorescent protein) and the exploitation of the pores as reaction vessels. Along these lines, the thermal and chemical stability of many MOFs has made them amenable to postsynthetic covalent organic and metal-complex functionalization. These capabilities enable substantial enhancement of gas storage in MOFs and have led to their extensive study in the catalysis of organic reactions, activation of small molecules (hydrogen, methane, and water), gas separation, biomedical imaging, and proton, electron, and ion conduction. At present, methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices. Outlook The precise control over the assembly of MOFs is expected to propel this field further into new realms of synthetic chemistry in which far more sophisticated materials may be accessed. For example, materials can be envisaged as having (i) compartments linked together to operate separately, yet function synergistically; (ii) dexterity to carry out parallel operations; (iii) ability to count, sort, and code information; and (iv) capability of dynamics with high fidelity. Efforts in this direction are already being undertaken through the introduction of a large number of different functional groups within the pores of MOFs. This yields multivariate frameworks in which the varying arrangement of functionalities gives rise to materials that offer a synergistic combination of properties. Future work will involve the assembly of chemical structures from many different types of building unit, such that the structures’ function is dictated by the heterogeneity of the specific arrangement of their constituents.
References
363
Referenced
14,296
10.1038/nature01650
- 2012 metal-organic frameworks issue. Chem. Rev. 112, 673–1268 (2012); http://pubs.acs.org/toc/chreay/112/2. / Chem. Rev. / 2012 metal-organic frameworks issue (2012)
10.1039/b511962f
10.1021/cen-v086n034.p013
10.1126/science.1067208
10.1021/ja074366o
10.1126/science.1181761
- A. F. Wells Structural Inorganic Chemistry (Oxford Univ. Press New York 1984).
10.1246/bcsj.32.1221
10.1021/ja00146a033
10.1002/anie.199717251
10.1021/ja981669x
10.1038/46248
10.1021/ja9015765
10.1038/nature02311
10.1021/ja071174k
10.1126/science.1192160
10.1126/science.1113247
10.1021/ja302623w
10.1021/ja3055639
10.1021/ic201376t
10.1021/ja202303b
10.1021/ja202303b
10.1038/nchem.834
10.1021/ja0771639
10.1021/ja9040016
10.1021/ja3059827
10.1039/c0jm01671c
10.1021/ja00082a055
10.1021/ja003159k
10.1038/35010088
10.1021/ja803777x
10.1021/ar800124u
10.1021/ic900486r
10.1126/science.283.5405.1148
10.1021/ja066616r
10.1021/ja058777l
10.1021/ja067435s
10.1021/ic901073w
10.1039/b801103f
10.1039/b900013e
10.1021/ja901109t
10.1002/anie.201001009
10.1021/ja1001407
10.1021/ic201744n
10.1021/ja110042b
10.1002/anie.201105966
10.1021/cg201520z
10.1002/1521-3773(20010601)40:11<2113::AID-ANIE2113>3.0.CO;2-3
10.1021/ic062273m
10.1039/b601811d
10.1021/ja1027925
10.1039/c1cc11107h
10.1021/ja045123o
10.1021/ja807023q
10.1073/pnas.0602439103
10.1021/ja8057953
10.1021/cm102601v
10.1021/ic300825s
10.1039/c1sc00136a
10.1002/anie.200462787
10.1021/ja800669j
10.1073/pnas.0909718106
10.1039/c0cs00031k
10.1021/cr200179u
10.1002/chem.200902158
10.1021/ja052431t
10.1002/anie.200903433
10.1021/ja805222x
10.1039/b807080f
10.1002/chem.200600220
10.1039/b718371b
10.1021/ic201396m
10.1002/zaac.200800158
10.1016/j.jorganchem.2007.01.010
10.1021/ar040173j
10.1021/ic050452i
10.1021/ja804703w
10.1016/j.jcat.2008.05.014
10.1021/ja807357r
10.1002/anie.200705998
10.1002/anie.201000576
10.1021/ja300539p
10.1126/science.1083440
10.1021/cr200274s
10.1021/ja056639q
10.1021/ja058213h
10.1021/ja710144k
10.1021/ja072599+
10.1021/ja809954r
10.1021/ja072871f
- Mercedes-Benz F125; www.emercedesbenz.com/autos/mercedes-benz/concept-vehicles/mercedes-benz-f125-research-vehicle-technology.
10.1002/1521-3773(20000616)39:12<2081::AID-ANIE2081>3.0.CO;2-A
- Green Car Congress; www.greencarcongress.com/2010/10/basf-develops-method-for-industrial-scale-mof-synthesis-trials-underway-in-natural-gas-vehicle-tanks.html.
10.1021/ja0570032
10.1021/la800227x
10.1021/ja8036096
10.1039/c1sc00354b
10.1021/ja206525x
10.1038/nature03852
10.1021/ic200744y
10.1002/anie.200502844
10.1126/science.1217544
10.1002/anie.201206410
10.1080/713738672
10.1021/ja109810w
10.1021/ja310435e
10.1021/ja808681m
10.1021/cm0310519
10.1038/nchem.402
10.1038/nmat2526
10.1002/anie.201102997
10.1021/cr200304e
10.1039/c1cs15276a
10.1021/ie202038m
10.1016/S1387-1811(02)00609-1
10.1021/cm900166h
10.1021/cm103571y
10.1021/ja3049282
10.1021/ja204233q
10.1021/nn100869j
10.1002/anie.201109132
10.1002/asia.201200754
10.1021/ja309361d
10.1126/science.1175441
10.1038/nchem.654
10.1021/ja1097644
10.1039/c0cs00147c
10.1021/ja204818q
10.1002/anie.200804836
10.1021/la100423a
10.1126/science.1190672
10.1002/anie.201103155
10.1002/anie.201203425
10.1021/ic801837t
10.1039/c1cc13170b
10.1039/c1cc15962c
10.1002/anie.200501508
10.1039/b515434k
10.1039/c2dt12138g
10.1039/c2dt32138f
10.1002/ejic.200701284
10.1126/science.1116275
10.1021/ja0656853
10.1039/b600188m
10.1002/anie.200461895
10.1039/b809419e
10.1007/s00269-008-0241-7
10.1021/ja802589u
10.1002/anie.200604306
10.1002/ejic.200400395
10.1016/j.tet.2008.06.036
10.1021/ja049408c
10.1039/c2sc20407j
10.1039/c2jm15933c
- Z. Ni thesis University of California Los Angeles (2007).
10.1021/jp302356q
10.1039/c1cc12884a
- O. M. Yaghi Hydrogen storage in metal-organic frameworks (2008); www.hydrogen.energy.gov/pdfs/review08/st_12_yaghi.pdf.
10.1021/cg200271e
10.1021/ja0700395
10.1039/c0cc04146g
10.1021/ja103016y
10.1021/ic034873g
10.1039/c2cc32232c
10.1002/anie.201107873
10.1002/anie.200461214
10.1166/jnn.2010.1493
10.1021/ja300034j
10.1039/c0cc00779j
10.1002/anie.200702324
10.1038/nchem.738
10.1002/anie.200705020
10.1021/ja809985t
10.1002/anie.200805980
10.1021/ic9015977
10.1039/c2cc34840c
10.1021/ic9015977
10.1016/j.jhazmat.2011.08.069
10.1039/c2dt31112g
10.1021/ja063538z
10.1002/anie.200604362
10.1021/ja903411w
10.1039/c0sc00179a
10.1021/ja0649217
10.1002/anie.200460592
10.1021/ja056906s
10.1021/ja901440g
10.1039/c2cc32384b
10.1021/ic8018452
10.1039/b900390h
10.1002/chem.201001549
10.1021/ja808995d
10.1002/chem.201002135
10.1021/ic0611948
10.1021/ja076877g
10.1039/b718367d
10.1016/j.jcat.2009.04.021
10.1039/c1cc00069a
10.1021/cm200557e
10.1021/ja903918s
10.1021/ja906198y
10.1039/b910265e
10.1039/b823392f
10.1021/ja903251e
10.1021/ic101125m
10.1002/anie.201004736
10.1021/cm1005899
10.1002/anie.201003377
10.1021/ja106935d
10.1021/ic101952y
10.1021/ic101935f
10.1002/anie.201200758
10.1021/ja801848j
10.1002/anie.200800686
10.1021/ic900796n
10.1039/b915291c
10.1021/ja100900c
10.1039/b806150e
10.1039/c0ce00416b
10.1021/ic100652x
10.1039/c000154f
10.1016/j.cej.2011.11.048
10.1039/c2ce25131k
10.1039/c2cc17461h
10.1002/anie.200802908
10.1039/b906170c
10.1002/anie.200905960
10.1021/ja202223d
10.1021/ja7114053
10.1039/c2ce06633e
10.1002/ejic.200800002
10.1002/anie.200802545
10.1021/ja909613e
10.1039/c2cc16949e
10.1039/c2dt30689a
10.1021/ic8023265
10.1002/anie.201001527
10.1021/ic1011549
10.1039/c1dt10734h
10.1039/c0cc04526h
10.1039/c2dt30672g
10.1039/c0cc02990d
10.1039/c0jm02416c
10.1021/ic102436b
10.1021/ja108774v
10.1002/cctc.201000386
10.1021/ja7111564
10.1038/nature08326
10.1021/ja900893p
10.1021/ja904189d
10.1039/c2ce06620c
10.1021/ja0009119
10.1021/ja991100b
10.1039/b718443c
10.1038/nmat2808
10.1021/ja056831s
10.1039/b706432b
10.1021/ja078231u
10.1002/chem.200801043
10.1021/ja9084995
10.1021/la100601a
10.1021/ja0740364
10.1021/ic800700h
10.1002/anie.201001063
10.1021/ja109103t
10.1002/anie.201001551
10.1002/anie.200905898
10.1039/b904526k
10.1021/cg9013027
10.1039/b909993j
10.1021/cm301605w
10.1021/ja0163772
10.1016/j.micromeso.2003.12.027
10.1016/j.molcata.2008.10.008
10.1039/b900841a
10.1021/ja101208s
10.1039/c1dt11274k
10.1021/ja067374y
10.1016/j.jcat.2008.11.010
10.1002/adfm.200801130
10.1021/ja9743351
10.1039/c2jm16030g
10.1039/c0sc00582g
10.1016/j.catcom.2011.03.040
10.1016/j.micromeso.2009.06.008
10.1016/j.apcata.2010.04.053
10.1039/b803953b
10.1021/ja2108118
10.1016/j.jcat.2007.06.004
10.1016/j.catcom.2011.07.004
10.3987/COM-09-S(S)58
10.1016/j.apcata.2010.08.045
10.1039/c2ce06608d
10.1039/b714083e
10.1016/j.jcat.2008.05.021
10.1002/chem.200901510
10.1002/ejic.200900509
10.1021/ja204820d
10.1039/b902954k
10.1021/ic0617689
10.1002/ejic.201000937
10.1039/b600408c
10.1002/anie.201205603
10.1039/c2cc18127d
10.1016/j.poly.2007.07.033
10.1021/ja111042f
10.1039/c2cc31075a
10.1039/b810414j
10.1039/b202639b
10.1039/c1dt10826c
10.1002/anie.201204475
10.1002/chem.201003173
10.1016/j.jcat.2009.12.002
10.1039/c0cc01506g
10.1016/j.jcat.2011.09.014
10.1021/ja2038003
10.1039/c1jm10394f
10.1021/ja303728c
10.1007/s11243-009-9188-x
10.1021/jf0512609
10.1021/cm8029517
10.1002/chem.200802385
10.1021/ic0111482
10.1002/anie.200503923
10.1016/j.tca.2009.11.004
10.1021/ja9047653
10.1021/ja203564w
10.1021/ja203695h
10.1016/j.jcat.2008.02.011
10.1002/chem.200800980
10.1002/chem.201101223
10.1016/j.jcat.2010.09.010
10.1002/anie.200602099
10.1039/b415960h
10.1039/b823323c
10.1021/ja2094316
10.1002/anie.201108565
10.1021/ja900203f
10.1016/j.jcat.2009.11.011
10.1039/c0cc01447h
10.1021/ja102134c
10.1002/chem.201101004
10.1002/anie.201205078
10.1039/c000775g
10.1002/cctc.200900228
10.1016/j.catcom.2007.11.019
10.1021/cs200530e
10.1021/cm703339h
10.1002/chem.200901465
10.1021/ja200122f
10.1016/j.jcat.2011.10.001
10.1039/c2cc34622b
10.1039/c2cc36678a
10.1002/adsc.201100503
10.1039/c1cc12701b
10.1021/ic200295h
10.1002/chem.201101321
10.1039/c2cc34620f
10.1039/b508588h
10.1021/ja800087s
10.1002/anie.200803846
10.1002/macp.200900354
Dates
Type | When |
---|---|
Created | 11 years, 11 months ago (Aug. 29, 2013, 2:10 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 10, 2024, 10:23 a.m.) |
Indexed | 44 minutes ago (Aug. 21, 2025, 2:28 a.m.) |
Issued | 11 years, 11 months ago (Aug. 30, 2013) |
Published | 11 years, 11 months ago (Aug. 30, 2013) |
Published Print | 11 years, 11 months ago (Aug. 30, 2013) |
@article{Furukawa_2013, title={The Chemistry and Applications of Metal-Organic Frameworks}, volume={341}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1230444}, DOI={10.1126/science.1230444}, number={6149}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Furukawa, Hiroyasu and Cordova, Kyle E. and O’Keeffe, Michael and Yaghi, Omar M.}, year={2013}, month=aug }