Abstract
Background Since at least 400 C.E., when the Mayans first used layered clays to make dyes, people have been harnessing the properties of layered materials. This gradually developed into scientific research, leading to the elucidation of the laminar structure of layered materials, detailed understanding of their properties, and eventually experiments to exfoliate or delaminate them into individual, atomically thin nanosheets. This culminated in the discovery of graphene, resulting in a new explosion of interest in two-dimensional materials. Layered materials consist of two-dimensional platelets weakly stacked to form three-dimensional structures. The archetypal example is graphite, which consists of stacked graphene monolayers. However, there are many others: from MoS 2 and layered clays to more exotic examples such as MoO 3 , GaTe, and Bi 2 Se 3 . These materials display a wide range of electronic, optical, mechanical, and electrochemical properties. Over the past decade, a number of methods have been developed to exfoliate layered materials in order to produce monolayer nanosheets. Such exfoliation creates extremely high-aspect-ratio nanosheets with enormous surface area, which are ideal for applications that require surface activity. More importantly, however, the two-dimensional confinement of electrons upon exfoliation leads to unprecedented optical and electrical properties. Advances An important advance has been the discovery that layered crystals can be exfoliated in liquids. There are a number of methods to do this that involve oxidation, ion intercalation/exchange, or surface passivation by solvents. However, all result in liquid dispersions containing large quantities of nanosheets. This brings considerable advantages: Liquid exfoliation allows the formation of thin films and composites, is potentially scaleable, and may facilitate processing by using standard technologies such as reel-to-reel manufacturing. Although much work has focused on liquid exfoliation of graphene, such processes have also been demonstrated for a host of other materials, including MoS 2 and related structures, layered oxides, and clays. The resultant liquid dispersions have been formed into films, hybrids, and composites for a range of applications. Outlook There is little doubt that the main advances are in the future. Multifunctional composites based on metal and polymer matrices will be developed that will result in enhanced mechanical, electrical, and barrier properties. Applications in energy generation and storage will abound, with layered materials appearing as electrodes or active elements in devices such as displays, solar cells, and batteries. Particularly important will be the use of MoS 2 for water splitting and metal oxides as hydrogen evolution catalysts. In addition, two-dimensional materials will find important roles in printed electronics as dielectrics, optoelectronic devices, and transistors. To achieve this, much needs to be done. Production rates need to be increased dramatically, the degree of exfoliation improved, and methods to control nanosheet properties developed. The range of layered materials that can be exfoliated must be expanded, even as methods for chemical modification must be developed. Success in these areas will lead to a family of materials that will dominate nanomaterials science in the 21st century.
References
140
Referenced
3,390
10.1126/science.1158877
10.1038/nmat1849
10.1038/nature11458
10.1021/nn1006495
10.1038/nnano.2012.193
10.1080/00018736900101307
10.1021/cm980211r
10.1002/adma.201001722
10.1039/b820160a
10.1002/adma.201103241
10.1039/b821435b
- Nalawade P., Aware B., Kadam V. J., Hirlekar R. S., J. Sci. Ind. Res. (India) 68, 267 (2009). / J. Sci. Ind. Res. (India) by Nalawade P. (2009)
10.1016/S0001-8686(99)00005-6
- B. Velde Introduction to Clay minerals: Chemistry Origins Uses and Environmental Significance (Chapman & Hall London UK 1992).
-
V. Grasso Ed. Electronic Structure and Electronic Transitions in Layered Materials (Springer New York 1986).
(
10.1007/978-94-009-4542-5
) 10.1103/RevModPhys.82.3045
10.1039/c1jm15467b
10.1103/PhysRevLett.105.136805
10.1021/nl903868w
10.1039/b917103g
10.1038/nnano.2011.94
10.1021/nl201874w
10.1016/0025-5408(86)90011-5
10.1021/nn302422x
10.1021/cm034307j
10.1126/science.156.3773.385
10.1038/nnano.2008.215
10.1021/ar300009f
10.1126/science.1194975
10.1021/ja807449u
10.1007/BF01141527
10.1063/1.1708627
10.1063/1.430513
10.1016/0040-6090(84)90025-7
10.1021/cm00009a018
10.1039/a908251d
10.1126/science.1102896
10.1073/pnas.0502848102
10.1038/nature05545
10.1038/nnano.2007.432
10.1002/adma.200903689
10.1021/nl048111+
10.1021/nl080649i
10.1002/app.38051
10.1021/la903188a
10.1021/jp110942e
10.1002/smll.200900242
10.1002/smll.200902066
10.1021/nn2044609
10.1021/nn1005304
10.1088/1367-2630/12/12/125008
10.1016/j.carbon.2009.07.049
-
Green A. A., Hersam M. C., Nano Lett. 9, 4031 (2009).
(
10.1021/nl902200b
) / Nano Lett. by Green A. A. (2009) 10.1021/jp302365w
10.1016/j.ssc.2009.09.018
10.1021/jz9002108
10.1002/adma.200900323
10.1002/adma.201102584
10.1021/nn300503e
10.1039/c2jm30587a
10.1021/cm301515z
10.1002/anie.201105364
10.1021/cm101254j
10.1002/adma.201003560
10.1016/j.jcis.2012.07.046
10.1021/nn204153h
10.1002/adma.201102306
10.1002/anie.201106004
10.1039/b920277c
10.1039/b820226e
10.1039/b605422f
10.1039/b416913a
10.1039/b511184f
10.1016/j.progpolymsci.2003.08.002
10.1557/JMR.2005.0161
10.1021/ja983043c
10.1016/j.progpolymsci.2008.07.008
10.1038/nature04969
10.1016/j.memsci.2012.03.051
10.1039/c2nr33049k
10.1039/c2nr31782f
10.1126/science.1200770
-
Laursen A. B., Kegnaes S., Dahl S., Chorkendorff I., Energy Environ. Sci. 5, 5577 (2012).
(
10.1039/c2ee02618j
) / Energy Environ. Sci. by Laursen A. B. (2012) 10.1039/b800489g
10.1021/nl301335q
10.1088/0031-8949/2012/T146/014006
10.1021/nn2024557
10.1038/nnano.2009.58
10.1021/cr900070d
10.1038/nnano.2010.172
10.1070/RC2003v072n02ABEH000789
10.1038/nnano.2010.279
10.1021/nl301485q
10.1021/cm960516a
- F. A. Levy Physics and Chemistry of Layered Materials vol. 6 Intercalated Layered Materials (D. Reidel Publishing Company Dordrecht Netherlands 1979).
10.1016/0167-2738(83)90024-3
10.1016/0025-5408(80)90118-X
10.1016/j.jmmm.2003.12.621
10.1021/cm980474l
-
Preda N., Mihut L., Baibarac M., Baltog I., Acta Physica Polonica A 116, 81 (2009).
(
10.12693/APhysPolA.116.81
) / Acta Physica Polonica A by Preda N. (2009) 10.1016/S0379-6779(99)00197-6
10.1021/ja960073b
10.1021/la9913755
10.1021/cm047990y
10.1039/c0nr00246a
10.1007/s10853-011-5260-y
10.1002/adma.201003759
-
Takagaki A., Tagusagawa C., Hayashi S., Hara M., Domen K., Energy Environ. Sci. 3, 82 (2010).
(
10.1039/B918563A
) / Energy Environ. Sci. by Takagaki A. (2010) 10.1002/adfm.201100580
10.1039/jm9940400551
10.1063/1.2356788
10.1016/S0927-0248(99)00088-4
10.1002/adma.200501915
10.1039/b110220f
10.1002/asia.201100279
10.1016/S0167-2738(02)00707-5
-
Treacy M. M. J., Fisher M. E., Jacobson A. J., Philos. Mag. 72, 161 (1995).
(
10.1080/01418619508239588
) / Philos. Mag. by Treacy M. M. J. (1995) 10.1038/374627a0
10.1080/14786437308227562
10.1021/ja073105b
10.1021/ic8009964
10.1021/ic50219a016
10.1149/1.2085350
10.1002/pssa.2211020148
10.1016/S0026-2692(03)00220-9
10.1103/PhysRevLett.65.1925
10.1016/j.micromeso.2007.06.050
10.1006/jcis.1996.4679
-
Atienzar P., et al.., Energy Environ. Sci. 4, 4718 (2011).
(
10.1039/c1ee02158c
) / Energy Environ. Sci. by Atienzar P. (2011) 10.1126/science.220.4595.365
-
S. M. Auerbach K. A. Carrado P. K. Dutta Eds. Handbook of Layered Materials (Marcel Dekker New York 2004).
(
10.1201/9780203021354
) 10.1038/pj.2011.140
10.1007/s10965-010-9481-6
- Chakraborti M., Jackson J. K., Plackett D., Brunette D. M., Burt H. M., Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration. Int. J. Pharm. 416, 305 (2011).2170823621708236 / Int. J. Pharm. / Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration by Chakraborti M. (2011)
10.1007/s10853-007-2251-0
10.1080/15421406.2012.634366
10.1039/b612389a
10.1039/b511110b
10.1179/174328408X341780
10.1016/j.elecom.2012.01.002
Dates
Type | When |
---|---|
Created | 12 years, 2 months ago (June 20, 2013, 2:15 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 10, 2024, 9:37 a.m.) |
Indexed | 1 hour, 3 minutes ago (Aug. 21, 2025, 5:43 a.m.) |
Issued | 12 years, 2 months ago (June 21, 2013) |
Published | 12 years, 2 months ago (June 21, 2013) |
Published Print | 12 years, 2 months ago (June 21, 2013) |
@article{Nicolosi_2013, title={Liquid Exfoliation of Layered Materials}, volume={340}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1226419}, DOI={10.1126/science.1226419}, number={6139}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Nicolosi, Valeria and Chhowalla, Manish and Kanatzidis, Mercouri G. and Strano, Michael S. and Coleman, Jonathan N.}, year={2013}, month=jun }