10.1126/science.1226419
Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Background Since at least 400 C.E., when the Mayans first used layered clays to make dyes, people have been harnessing the properties of layered materials. This gradually developed into scientific research, leading to the elucidation of the laminar structure of layered materials, detailed understanding of their properties, and eventually experiments to exfoliate or delaminate them into individual, atomically thin nanosheets. This culminated in the discovery of graphene, resulting in a new explosion of interest in two-dimensional materials. Layered materials consist of two-dimensional platelets weakly stacked to form three-dimensional structures. The archetypal example is graphite, which consists of stacked graphene monolayers. However, there are many others: from MoS 2 and layered clays to more exotic examples such as MoO 3 , GaTe, and Bi 2 Se 3 . These materials display a wide range of electronic, optical, mechanical, and electrochemical properties. Over the past decade, a number of methods have been developed to exfoliate layered materials in order to produce monolayer nanosheets. Such exfoliation creates extremely high-aspect-ratio nanosheets with enormous surface area, which are ideal for applications that require surface activity. More importantly, however, the two-dimensional confinement of electrons upon exfoliation leads to unprecedented optical and electrical properties. Advances An important advance has been the discovery that layered crystals can be exfoliated in liquids. There are a number of methods to do this that involve oxidation, ion intercalation/exchange, or surface passivation by solvents. However, all result in liquid dispersions containing large quantities of nanosheets. This brings considerable advantages: Liquid exfoliation allows the formation of thin films and composites, is potentially scaleable, and may facilitate processing by using standard technologies such as reel-to-reel manufacturing. Although much work has focused on liquid exfoliation of graphene, such processes have also been demonstrated for a host of other materials, including MoS 2 and related structures, layered oxides, and clays. The resultant liquid dispersions have been formed into films, hybrids, and composites for a range of applications. Outlook There is little doubt that the main advances are in the future. Multifunctional composites based on metal and polymer matrices will be developed that will result in enhanced mechanical, electrical, and barrier properties. Applications in energy generation and storage will abound, with layered materials appearing as electrodes or active elements in devices such as displays, solar cells, and batteries. Particularly important will be the use of MoS 2 for water splitting and metal oxides as hydrogen evolution catalysts. In addition, two-dimensional materials will find important roles in printed electronics as dielectrics, optoelectronic devices, and transistors. To achieve this, much needs to be done. Production rates need to be increased dramatically, the degree of exfoliation improved, and methods to control nanosheet properties developed. The range of layered materials that can be exfoliated must be expanded, even as methods for chemical modification must be developed. Success in these areas will lead to a family of materials that will dominate nanomaterials science in the 21st century.

Bibliography

Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S., & Coleman, J. N. (2013). Liquid Exfoliation of Layered Materials. Science, 340(6139).

Authors 5
  1. Valeria Nicolosi (first)
  2. Manish Chhowalla (additional)
  3. Mercouri G. Kanatzidis (additional)
  4. Michael S. Strano (additional)
  5. Jonathan N. Coleman (additional)
References 140 Referenced 3,390
  1. 10.1126/science.1158877
  2. 10.1038/nmat1849
  3. 10.1038/nature11458
  4. 10.1021/nn1006495
  5. 10.1038/nnano.2012.193
  6. 10.1080/00018736900101307
  7. 10.1021/cm980211r
  8. 10.1002/adma.201001722
  9. 10.1039/b820160a
  10. 10.1002/adma.201103241
  11. 10.1039/b821435b
  12. Nalawade P., Aware B., Kadam V. J., Hirlekar R. S., J. Sci. Ind. Res. (India) 68, 267 (2009). / J. Sci. Ind. Res. (India) by Nalawade P. (2009)
  13. 10.1016/S0001-8686(99)00005-6
  14. B. Velde Introduction to Clay minerals: Chemistry Origins Uses and Environmental Significance (Chapman & Hall London UK 1992).
  15. V. Grasso Ed. Electronic Structure and Electronic Transitions in Layered Materials (Springer New York 1986). (10.1007/978-94-009-4542-5)
  16. 10.1103/RevModPhys.82.3045
  17. 10.1039/c1jm15467b
  18. 10.1103/PhysRevLett.105.136805
  19. 10.1021/nl903868w
  20. 10.1039/b917103g
  21. 10.1038/nnano.2011.94
  22. 10.1021/nl201874w
  23. 10.1016/0025-5408(86)90011-5
  24. 10.1021/nn302422x
  25. 10.1021/cm034307j
  26. 10.1126/science.156.3773.385
  27. 10.1038/nnano.2008.215
  28. 10.1021/ar300009f
  29. 10.1126/science.1194975
  30. 10.1021/ja807449u
  31. 10.1007/BF01141527
  32. 10.1063/1.1708627
  33. 10.1063/1.430513
  34. 10.1016/0040-6090(84)90025-7
  35. 10.1021/cm00009a018
  36. 10.1039/a908251d
  37. 10.1126/science.1102896
  38. 10.1073/pnas.0502848102
  39. 10.1038/nature05545
  40. 10.1038/nnano.2007.432
  41. 10.1002/adma.200903689
  42. 10.1021/nl048111+
  43. 10.1021/nl080649i
  44. 10.1002/app.38051
  45. 10.1021/la903188a
  46. 10.1021/jp110942e
  47. 10.1002/smll.200900242
  48. 10.1002/smll.200902066
  49. 10.1021/nn2044609
  50. 10.1021/nn1005304
  51. 10.1088/1367-2630/12/12/125008
  52. 10.1016/j.carbon.2009.07.049
  53. Green A. A., Hersam M. C., Nano Lett. 9, 4031 (2009). (10.1021/nl902200b) / Nano Lett. by Green A. A. (2009)
  54. 10.1021/jp302365w
  55. 10.1016/j.ssc.2009.09.018
  56. 10.1021/jz9002108
  57. 10.1002/adma.200900323
  58. 10.1002/adma.201102584
  59. 10.1021/nn300503e
  60. 10.1039/c2jm30587a
  61. 10.1021/cm301515z
  62. 10.1002/anie.201105364
  63. 10.1021/cm101254j
  64. 10.1002/adma.201003560
  65. 10.1016/j.jcis.2012.07.046
  66. 10.1021/nn204153h
  67. 10.1002/adma.201102306
  68. 10.1002/anie.201106004
  69. 10.1039/b920277c
  70. 10.1039/b820226e
  71. 10.1039/b605422f
  72. 10.1039/b416913a
  73. 10.1039/b511184f
  74. 10.1016/j.progpolymsci.2003.08.002
  75. 10.1557/JMR.2005.0161
  76. 10.1021/ja983043c
  77. 10.1016/j.progpolymsci.2008.07.008
  78. 10.1038/nature04969
  79. 10.1016/j.memsci.2012.03.051
  80. 10.1039/c2nr33049k
  81. 10.1039/c2nr31782f
  82. 10.1126/science.1200770
  83. Laursen A. B., Kegnaes S., Dahl S., Chorkendorff I., Energy Environ. Sci. 5, 5577 (2012). (10.1039/c2ee02618j) / Energy Environ. Sci. by Laursen A. B. (2012)
  84. 10.1039/b800489g
  85. 10.1021/nl301335q
  86. 10.1088/0031-8949/2012/T146/014006
  87. 10.1021/nn2024557
  88. 10.1038/nnano.2009.58
  89. 10.1021/cr900070d
  90. 10.1038/nnano.2010.172
  91. 10.1070/RC2003v072n02ABEH000789
  92. 10.1038/nnano.2010.279
  93. 10.1021/nl301485q
  94. 10.1021/cm960516a
  95. F. A. Levy Physics and Chemistry of Layered Materials vol. 6 Intercalated Layered Materials (D. Reidel Publishing Company Dordrecht Netherlands 1979).
  96. 10.1016/0167-2738(83)90024-3
  97. 10.1016/0025-5408(80)90118-X
  98. 10.1016/j.jmmm.2003.12.621
  99. 10.1021/cm980474l
  100. Preda N., Mihut L., Baibarac M., Baltog I., Acta Physica Polonica A 116, 81 (2009). (10.12693/APhysPolA.116.81) / Acta Physica Polonica A by Preda N. (2009)
  101. 10.1016/S0379-6779(99)00197-6
  102. 10.1021/ja960073b
  103. 10.1021/la9913755
  104. 10.1021/cm047990y
  105. 10.1039/c0nr00246a
  106. 10.1007/s10853-011-5260-y
  107. 10.1002/adma.201003759
  108. Takagaki A., Tagusagawa C., Hayashi S., Hara M., Domen K., Energy Environ. Sci. 3, 82 (2010). (10.1039/B918563A) / Energy Environ. Sci. by Takagaki A. (2010)
  109. 10.1002/adfm.201100580
  110. 10.1039/jm9940400551
  111. 10.1063/1.2356788
  112. 10.1016/S0927-0248(99)00088-4
  113. 10.1002/adma.200501915
  114. 10.1039/b110220f
  115. 10.1002/asia.201100279
  116. 10.1016/S0167-2738(02)00707-5
  117. Treacy M. M. J., Fisher M. E., Jacobson A. J., Philos. Mag. 72, 161 (1995). (10.1080/01418619508239588) / Philos. Mag. by Treacy M. M. J. (1995)
  118. 10.1038/374627a0
  119. 10.1080/14786437308227562
  120. 10.1021/ja073105b
  121. 10.1021/ic8009964
  122. 10.1021/ic50219a016
  123. 10.1149/1.2085350
  124. 10.1002/pssa.2211020148
  125. 10.1016/S0026-2692(03)00220-9
  126. 10.1103/PhysRevLett.65.1925
  127. 10.1016/j.micromeso.2007.06.050
  128. 10.1006/jcis.1996.4679
  129. Atienzar P., et al.., Energy Environ. Sci. 4, 4718 (2011). (10.1039/c1ee02158c) / Energy Environ. Sci. by Atienzar P. (2011)
  130. 10.1126/science.220.4595.365
  131. S. M. Auerbach K. A. Carrado P. K. Dutta Eds. Handbook of Layered Materials (Marcel Dekker New York 2004). (10.1201/9780203021354)
  132. 10.1038/pj.2011.140
  133. 10.1007/s10965-010-9481-6
  134. Chakraborti M., Jackson J. K., Plackett D., Brunette D. M., Burt H. M., Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration. Int. J. Pharm. 416, 305 (2011).2170823621708236 / Int. J. Pharm. / Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration by Chakraborti M. (2011)
  135. 10.1007/s10853-007-2251-0
  136. 10.1080/15421406.2012.634366
  137. 10.1039/b612389a
  138. 10.1039/b511110b
  139. 10.1179/174328408X341780
  140. 10.1016/j.elecom.2012.01.002
Dates
Type When
Created 12 years, 2 months ago (June 20, 2013, 2:15 p.m.)
Deposited 1 year, 7 months ago (Jan. 10, 2024, 9:37 a.m.)
Indexed 1 hour, 3 minutes ago (Aug. 21, 2025, 5:43 a.m.)
Issued 12 years, 2 months ago (June 21, 2013)
Published 12 years, 2 months ago (June 21, 2013)
Published Print 12 years, 2 months ago (June 21, 2013)
Funders 0

None

@article{Nicolosi_2013, title={Liquid Exfoliation of Layered Materials}, volume={340}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1226419}, DOI={10.1126/science.1226419}, number={6139}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Nicolosi, Valeria and Chhowalla, Manish and Kanatzidis, Mercouri G. and Strano, Michael S. and Coleman, Jonathan N.}, year={2013}, month=jun }