Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Modeling the BrainNeurons are pretty complicated cells. They display an endless variety of shapes that sprout highly variable numbers of axons and dendrites; they sport time- and voltage-dependent ion channels along with an impressive array of neurotransmitter receptors; and they connect intimately with near neighbors as well as former neighbors who have since moved away. Simulating a sizeable chunk of brain tissue has recently become achievable, thanks to advances in computer hardware and software.Eliasmithet al.(p.1202; see the Perspective byMachens) present their million-neuron model of the brain and show that it can recognize numerals, remember lists of digits, and write down those lists—tasks that seem effortless for a human but that encompass the triad of perception, cognition, and behavior.

Bibliography

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., & Rasmussen, D. (2012). A Large-Scale Model of the Functioning Brain. Science, 338(6111), 1202–1205.

Authors 7
  1. Chris Eliasmith (first)
  2. Terrence C. Stewart (additional)
  3. Xuan Choo (additional)
  4. Trevor Bekolay (additional)
  5. Travis DeWolf (additional)
  6. Yichuan Tang (additional)
  7. Daniel Rasmussen (additional)
References 74 Referenced 658
  1. 10.1016/j.neucom.2010.08.004
  2. 10.1038/nrn1848
  3. R. Ananthanarayanan D. S. Modha in Proceedings of the 2007 ACM/IEEE Conference on Supercomputing-SC '07 (Association for Computing Machinery Press New York 2007) p. 1. (10.1145/1362622.1362627)
  4. 10.1073/pnas.0712231105
  5. Ranzato M., Boureau Y., LeCun Y., Sparse feature learning for deep belief networks. Adv. Neural Inf. Process. Syst. 20, 1 (2007). / Adv. Neural Inf. Process. Syst. / Sparse feature learning for deep belief networks by Ranzato M. (2007)
  6. 10.1126/science.1127647
  7. 10.1093/cercor/12.3.306
  8. 10.1037/0033-295X.100.2.183
  9. 10.1038/35044563
  10. 10.1371/journal.pcbi.1000586
  11. J. Raven J. Court Manual for Raven’s Progressive Matrices and Vocabulary Scales (Harcourt Assessment San Antonio TX 2004). (10.53841/bpstest.2003.rvs)
  12. T. Pasternak J. Bisley D. Calkins in Handbook of Psychology Biological Psychology M. Gallagher R. J. Nelson Eds. (Wiley Hoboken NJ 2003) vol. 3 pp. 139–185. (10.1002/0471264385.wei0306)
  13. E. Todorov The Cognitive Neurosciences M. S. Gazzaniga Ed. (MIT Press Cambridge MA 2009).
  14. Stewart T., Bekolay T., Eliasmith C., Learning to select actions with spiking neurons in the basal ganglia. Front. Decis. Neurosci. 6, article no. 00002 (2012); 10.3389/fnins.2012.00002. / Front. Decis. Neurosci. / Learning to select actions with spiking neurons in the basal ganglia by Stewart T. (2012)
  15. 10.1371/journal.pone.0022885
  16. 10.1111/j.2044-8279.1964.tb00632.x
  17. 10.1037/h0025692
  18. 10.1080/002075999399576
  19. I. Chaaban M. R. Scheessele “Human performance on the USPS database” (Technical Report Indiana Univ. South Bend IN 2007).
  20. 10.1162/neco.2008.07-07-572
  21. C. Eliasmith How to Build a Brain: A Neural Architecture for Biological Cognition (Oxford Univ. Press New York 2012). (10.1093/acprof:oso/9780199794546.001.0001)
  22. C. Eliasmith C. H. Anderson Neural Engineering: Computation Representation and Dynamics in Neurobiological Systems (MIT Press Cambridge MA 2003).
  23. 10.1152/jn.00370.2007
  24. 10.1007/s10827-005-6558-z
  25. 10.1007/s00422-005-0576-9
  26. 10.1523/JNEUROSCI.4864-05.2006
  27. 10.1016/j.cogsys.2007.11.001
  28. T. C. Stewart X. Choo C. Eliasmith in Proceedings of the 10th International Conference on Cognitive Modeling D. D. Salvucci G. Gunzelmann Eds. (Drexel Univ. Philadelphia 2010) pp. 235–240.
  29. 10.1080/09540091.2011.571761
  30. 10.1126/science.2911737
  31. 10.1146/annurev.neuro.29.051605.112854
  32. 10.1038/nn1786
  33. Y. Tang C. Eliasmith in Proceedings of the 27th International Conference on Machine Learning J. Fürnkranz T. Joachims Eds. (Omnipress Madison WI 2010) pp. 1055–1062.
  34. 10.1088/1741-2560/8/6/065009
  35. 10.1523/JNEUROSCI.3276-09.2010
  36. 10.3758/BF03196323
  37. Qi X. L., et al.., Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Front. Syst. Neurosci. 4, 12 (2010).20514341 / Front. Syst. Neurosci. / Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex by Qi X. L. (2010)
  38. T. A. Plate Holographic Reduced Representations (Center for the Study of Language and Information Publication Stanford CA 2003).
  39. X. Choo thesis University of Waterloo (2010).
  40. 10.1002/hbm.21329
  41. 10.1093/cercor/bhj092
  42. 10.1111/j.1756-8765.2010.01127.x
  43. 10.1038/nrn1747
  44. 10.1006/brcg.1999.1096
  45. 10.1093/brain/107.2.385
  46. 10.3758/BF03196206
  47. 10.2466/pms.1962.15.3.646
  48. 10.1017/S0140525X0004855X
  49. J. F. Sowa Conceptual Structures: Information Processing in Mind and Machine (Addison-Wesley Reading MA 1984).
  50. 10.1038/nature06860
  51. 10.1162/089976603322518759
  52. 10.1152/jn.01107.2006
  53. B. Bobier thesis University of Waterloo (2011).
  54. 10.1093/cercor/bhl092
  55. T. Bekolay thesis University of Waterloo (2011).
  56. 10.1016/0896-6273(90)90162-9
  57. 10.1126/science.287.5451.273
  58. 10.1113/jphysiol.1995.sp020521
  59. 10.1113/jphysiol.2007.130864
  60. T. Stewart C. Eliasmith in Proceedings of the 33rd Annual Conference of the Cognitive Science Society L. Carlson C. Hölscher T. Shipley Eds. (Cognitive Science Society Austin TX 2011) pp. 656–661.
  61. 10.1152/jn.2002.88.1.455
  62. 10.1038/nn890
  63. 10.1093/cercor/1.1.1-a
  64. 10.1152/jn.01354.2007
  65. 10.1016/j.cub.2004.07.016
  66. 10.1016/j.neures.2005.10.013
  67. 10.1016/0166-2236(89)90074-X
  68. 10.1016/S0168-0102(02)00027-5
  69. 10.1016/j.neuron.2010.06.023
  70. 10.1007/PL00007984
  71. 10.1038/1124
  72. 10.3389/fncom.2011.00001
  73. 10.1093/brain/116.1.243
  74. E. Todorov in Progress in Motor Control III M. Latash M. Levin Eds. (Human Kinetics Chicago 2004) chap. 6 pp. 125–166.
Dates
Type When
Created 12 years, 8 months ago (Nov. 29, 2012, 2:15 p.m.)
Deposited 4 months ago (April 22, 2025, 8:01 p.m.)
Indexed 55 minutes ago (Aug. 27, 2025, 1:59 a.m.)
Issued 12 years, 8 months ago (Nov. 30, 2012)
Published 12 years, 8 months ago (Nov. 30, 2012)
Published Print 12 years, 8 months ago (Nov. 30, 2012)
Funders 0

None

@article{Eliasmith_2012, title={A Large-Scale Model of the Functioning Brain}, volume={338}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1225266}, DOI={10.1126/science.1225266}, number={6111}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Eliasmith, Chris and Stewart, Terrence C. and Choo, Xuan and Bekolay, Trevor and DeWolf, Travis and Tang, Yichuan and Rasmussen, Daniel}, year={2012}, month=nov, pages={1202–1205} }