Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Quantum Leap? Quantum computers are expected to be able to solve some of the most difficult problems in mathematics and physics. It is not known, however, whether quantum field theories (QFTs) can be simulated efficiently with a quantum computer. QFTs are used in particle and condensed matter physics and have an infinite number of degrees of freedom; discretization is necessary to simulate them digitally. Jordan et al. (p. 1130 ; see the Perspective by Hauke et al. ) present an algorithm for the efficient simulation of a particular kind of QFT (with quartic interactions) and estimate the error caused by discretization. Even for the most difficult case of strong interactions, the run time of the algorithm was polynomial (rather than exponential) in parameters such as the number of particles, their energy, and the prescribed precision, making it much more efficient than the best classical algorithms.

Bibliography

Jordan, S. P., Lee, K. S. M., & Preskill, J. (2012). Quantum Algorithms for Quantum Field Theories. Science, 336(6085), 1130–1133.

Authors 3
  1. Stephen P. Jordan (first)
  2. Keith S. M. Lee (additional)
  3. John Preskill (additional)
References 45 Referenced 374
  1. 10.1007/BF02650179
  2. 10.1126/science.273.5278.1073
  3. 10.1103/PhysRevLett.79.2586
  4. 10.1098/rspa.1998.0162
  5. 10.1126/science.1208001
  6. 10.1088/1367-2630/13/8/085007
  7. 10.1038/nature09801
  8. 10.1103/PhysRevD.10.536
  9. 10.1007/BF01608544
  10. 10.1007/BF01609341
  11. Osterwalder K., Sénéor R., The scattering matrix is nontrivial for weakly coupled P(ϕ)2 models. Helv. Phys. Acta 49, 525 (1976). / Helv. Phys. Acta / The scattering matrix is nontrivial for weakly coupled P(ϕ)2 models by Osterwalder K. (1976)
  12. J.-P. Eckmann H. Epstein J. Fröhlich Asymptotic perturbation expansion for the S-matrix and the definition of time ordered functions in relativistic quantum field models. Ann. Inst. Henri Poincaré A 25 1 (1976).
  13. 10.1016/0003-4916(77)90349-9
  14. 10.1103/PhysRevA.73.022328
  15. 10.1103/PhysRevLett.95.040402
  16. 10.1103/PhysRevLett.107.275301
  17. G. Szirmai E. Szirmai A. Zamora M. Lewenstein Gauge fields emerging from time reversal symmetry breaking for spin-5/2 fermions in a honeycomb lattice. Phys. Rev. A 84 011611(R) (2011). (10.1103/PhysRevA.84.011611)
  18. 10.1103/PhysRevLett.105.190403
  19. 10.1088/1367-2630/14/1/015007
  20. 10.1103/PhysRevA.83.033625
  21. 10.1103/PhysRevLett.105.190404
  22. 10.1016/j.physleta.2009.05.029
  23. 10.1209/0295-5075/92/50003
  24. 10.1103/PhysRevLett.103.085301
  25. 10.1103/PhysRevLett.98.160405
  26. 10.1038/nphys1614
  27. 10.1103/PhysRevLett.107.260501
  28. Casanova J. Mezzacapo A. Lamata L. Solano E. http://arxiv.org/abs/1110.3730 (2011).
  29. 10.1103/PhysRevB.69.214501
  30. 10.1080/00018730701223200
  31. 10.1088/0953-4075/42/15/154009
  32. 10.1016/0375-9601(90)90962-N
  33. 10.1007/s00220-006-0150-x
  34. Kitaev A. Webb W. A. http://arxiv.org/abs/0801.0342 (2008).
  35. 10.1090/S0025-5718-1974-0331751-8
  36. 10.1016/S0747-7171(08)80013-2
  37. M. E. Peskin D. V. Schroeder An Introduction to Quantum Field Theory (Westview Boulder CO 1995).
  38. Kitaev A. Y. http://arxiv.org/abs/quant-ph/9511026 (1995).
  39. 10.1016/0370-2693(94)01419-D
  40. 10.1016/0550-3213(91)90244-R
  41. 10.1103/PhysRevLett.39.95
  42. 10.1016/0550-3213(87)90177-5
  43. A. Messiah Quantum Mechanics (Dover 1999). (Reprint of the two-volume edition published by Wiley 1961–1962.)
  44. 10.1063/1.2798382
  45. 10.1090/psapm/068/2762145
Dates
Type When
Created 13 years, 3 months ago (May 31, 2012, 2:20 p.m.)
Deposited 1 year, 7 months ago (Jan. 10, 2024, 8:49 a.m.)
Indexed 1 week ago (Aug. 26, 2025, 2:52 a.m.)
Issued 13 years, 3 months ago (June 1, 2012)
Published 13 years, 3 months ago (June 1, 2012)
Published Print 13 years, 3 months ago (June 1, 2012)
Funders 0

None

@article{Jordan_2012, title={Quantum Algorithms for Quantum Field Theories}, volume={336}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1217069}, DOI={10.1126/science.1217069}, number={6085}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Jordan, Stephen P. and Lee, Keith S. M. and Preskill, John}, year={2012}, month=jun, pages={1130–1133} }