Abstract
Paracrystalline Amorphous silicon has traditionally been represented by a continuous random network model in which there is no long-range ordering for the atoms, and some have less than fourfold coordination, which form dangling bonds—a type of defect. Treacy and Borisenko (p. 950 ; see the Perspective by Gibson ) used fluctuation electron microscopy to explain that models including regions of crystalline order are needed to fit the observed local variations in structure. Thus, on the 1- to 2-nanometer-length scale, this material should be thought of as having a paracrystalline structure containing localized crystalline regions.
References
43
Referenced
196
10.1103/PhysRevLett.104.105701
10.1038/nmat2634
10.1063/1.2976428
10.1103/PhysRevB.78.014207
10.1126/science.1177483
10.1103/PhysRevLett.107.145702
10.1038/nmat2767
10.1021/ja01349a006
10.1103/PhysRevLett.54.1392
10.1103/PhysRevB.62.4985
10.1016/S0022-3093(01)00342-8
10.1103/PhysRevB.64.245214
10.1103/PhysRevB.60.13520
10.1146/annurev.matsci.35.082803.103337
10.1103/PhysRevB.63.115210
10.1103/PhysRevB.36.6539
- R. Hosemann S. N. Baggchi Direct Analysis of Diffraction by Matter (North-Holland Amsterdam 1962).
10.1016/0022-3093(72)90113-5
10.1016/S0022-3093(98)00371-8
10.1103/PhysRevLett.86.5514
10.1088/0953-8984/19/45/455204
10.1103/PhysRevLett.105.125504
- Wright A. C., Longer range order in single component network glasses? Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 49, 103 (2008). / Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B / Longer range order in single component network glasses? by Wright A. C. (2008)
10.1103/PhysRevLett.23.1167
10.1103/PhysRevB.69.195207
10.1016/j.actamat.2011.09.039
10.1103/PhysRevB.71.054204
10.1557/jmr.2009.0386
10.1103/PhysRevB.38.9902
- W. H. Press S. A. Teukolsky W. T. Vetterling B. P. Flannery Numerical Recipes in C (Cambridge Univ. Press Cambridge 1992).
10.1103/PhysRevB.79.155209
10.1016/0022-3093(90)90269-R
10.1016/S0022-3093(99)00794-2
10.1016/S0304-3991(02)00155-9
-
J. M. Gibson J.-Y. Cheng P. M. Voyles M. M. J. Treacy D. C. Jacobson Microstructural Processes in Irradiated Materials S. J. Zinkle G. Lucas R. Ewing Eds. (Materials Research Society Warrendale PA 1999) vol. 540 pp. 27–32.
(
10.1557/PROC-540-27
) 10.1016/j.ultramic.2008.10.006
10.1038/344423a0
10.1103/PhysRevB.62.11089
10.1080/14786435.2010.487475
-
E. J. Kirkland Advanced Computing in Electron Microscopy (Plenum New York 1998).
(
10.1007/978-1-4757-4406-4
) - M. M. J. Treacy J. M. Gibson Inst. Phys. Conf. Ser. 153 433 (1997).
10.1088/0953-8984/19/45/455202
- B. Haberl Structural characterization of amorphous silicon thesis The Australian National University Canberra (2010).
Dates
Type | When |
---|---|
Created | 13 years, 6 months ago (Feb. 23, 2012, 2:27 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 10, 2024, 9:30 a.m.) |
Indexed | 2 weeks, 4 days ago (Aug. 6, 2025, 9:15 a.m.) |
Issued | 13 years, 6 months ago (Feb. 24, 2012) |
Published | 13 years, 6 months ago (Feb. 24, 2012) |
Published Print | 13 years, 6 months ago (Feb. 24, 2012) |
@article{Treacy_2012, title={The Local Structure of Amorphous Silicon}, volume={335}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1214780}, DOI={10.1126/science.1214780}, number={6071}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Treacy, M. M. J. and Borisenko, K. B.}, year={2012}, month=feb, pages={950–953} }