Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Thin FrictionThe rubbing motion between two surfaces is always hindered by friction, which is caused by continuous contacting and attraction between the surfaces. These interactions may only occur over a distance of a few nanometers, but what happens when the interacting materials are only that thick?Leeet al.(p.76; see the Perspective byMüser and Shakhvorostov) explored the frictional properties of a silicon tip in contact with four atomically thin quasi–two dimensional materials with different electrical properties. For all the materials, the friction was seen to increase as the thickness of the film decreased, both for flakes supported by substrates and for regions placed above holes that formed freely suspended membranes. Placing graphene on mica, to which it strongly adheres, suppressed this trend. For these thin, weakly adhered films, out-of-plane buckling is likely to dominate the frictional response, which leads to this universal behavior.

Bibliography

Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R. W., & Hone, J. (2010). Frictional Characteristics of Atomically Thin Sheets. Science, 328(5974), 76–80.

Dates
Type When
Created 15 years, 4 months ago (April 1, 2010, 4:36 p.m.)
Deposited 6 months ago (Feb. 19, 2025, 3:34 p.m.)
Indexed 1 day ago (Aug. 20, 2025, 8:33 a.m.)
Issued 15 years, 4 months ago (April 2, 2010)
Published 15 years, 4 months ago (April 2, 2010)
Published Print 15 years, 4 months ago (April 2, 2010)
Funders 0

None

@article{Lee_2010, title={Frictional Characteristics of Atomically Thin Sheets}, volume={328}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1184167}, DOI={10.1126/science.1184167}, number={5974}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Lee, Changgu and Li, Qunyang and Kalb, William and Liu, Xin-Zhou and Berger, Helmuth and Carpick, Robert W. and Hone, James}, year={2010}, month=apr, pages={76–80} }