Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light.

Bibliography

Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M. C., Agard, D. A., Gustafsson, M. G. L., Leonhardt, H., & Sedat, J. W. (2008). Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy. Science, 320(5881), 1332–1336.

Authors 12
  1. Lothar Schermelleh (first)
  2. Peter M. Carlton (additional)
  3. Sebastian Haase (additional)
  4. Lin Shao (additional)
  5. Lukman Winoto (additional)
  6. Peter Kner (additional)
  7. Brian Burke (additional)
  8. M. Cristina Cardoso (additional)
  9. David A. Agard (additional)
  10. Mats G. L. Gustafsson (additional)
  11. Heinrich Leonhardt (additional)
  12. John W. Sedat (additional)
References 30 Referenced 996
  1. M. Born E. Wolf Eds. Principle of Optics (Cambridge Univ. Press Cambridge 1998).
  2. J. B. Pawley Ed. Handbook of Biological Confocal Microscopy (Springer New York ed. 3 2006). (10.1007/978-0-387-45524-2)
  3. 10.1007/BF02956173
  4. 10.1529/biophysj.107.120345
  5. 10.1046/j.1365-2818.2000.00710.x
  6. R. Heintzmann, G. Ficz, Brief. Funct. Genomics Proteomics5, 289 (2006). (10.1093/bfgp/ell036) / Brief. Funct. Genomics Proteomics (2006)
  7. 10.1038/nbt895
  8. 10.1126/science.1137395
  9. 10.1126/science.1126308
  10. 10.1038/nature04592
  11. Material and methods are available on Science Online.
  12. R. Reicheltet al., J. Cell Biol.110, 883 (1990). (10.1083/jcb.110.4.883) / J. Cell Biol. (1990)
  13. B. Burke, C. L. Stewart, Nat. Rev. Mol. Cell Biol.3, 575 (2002). (10.1038/nrm879) / Nat. Rev. Mol. Cell Biol. (2002)
  14. M. R. Paddy, A. S. Belmont, H. Saumweber, D. A. Agard, J. W. Sedat, Cell62, 89 (1990). (10.1016/0092-8674(90)90243-8) / Cell (1990)
  15. 10.1126/science.1104808
  16. 10.1038/nature06170
  17. 10.1016/S0022-2836(03)00266-3
  18. D. A. Agard, Y. Hiraoka, P. Shaw, J. W. Sedat, Methods Cell Biol.30, 353 (1989). (10.1016/S0091-679X(08)60986-3) / Methods Cell Biol. (1989)
  19. H. Albiezet al., Chromosome Res.14, 707 (2006). (10.1007/s10577-006-1086-x) / Chromosome Res. (2006)
  20. L. Gerace, A. Blum, G. Blobel, J. Cell Biol.79, 546 (1978). (10.1083/jcb.79.2.546) / J. Cell Biol. (1978)
  21. 10.1016/S1047-8477(02)00524-5
  22. R. Tonini, F. Grohovaz, C. A. Laporta, M. Mazzanti, FASEB J.13, 1395 (1999). (10.1096/fasebj.13.11.1395) / FASEB J. (1999)
  23. M. Winey, D. Yarar, T. H. Giddings Jr., D. N. Mastronarde, Mol. Biol. Cell8, 2119 (1997). (10.1091/mbc.8.11.2119) / Mol. Biol. Cell (1997)
  24. 10.1083/jcb.136.3.531
  25. 10.1126/science.1146598
  26. 10.1126/science.1127344
  27. 10.1073/pnas.0604965103
  28. 10.1126/science.1153529
  29. 10.1038/nmeth929
  30. This work was supported by grants from the Bavaria California Technology Center the Center for NanoScience the Nanosystems Initiative Munich and the Deutsche Forschungsgemeinschaft to L. Schermelleh M.C.C. and H.L.; by NIH grant GM-2501–25 to J.W.S.; by the David and Lucile Packard Foundation; and by NSF through the Center for Biophotonics an NSF Science and Technology Center managed by the University of California Davis under cooperative agreement no. PHY 0120999. P.M.C. is partially supported by the Keck Laboratory for Advanced Microscopy at the University of California San Francisco. We thank A. Čopïč K. Weis and F. Spada for comments on the manuscript and helpful discussions. P.M.C. L. Shao L.W. and P.K. have performed limited paid consulting for Applied Precision which is planning a commercial microscope system using three-dimensional structured illumination. The University of California holds patents for structured illumination microscopy.
Dates
Type When
Created 17 years, 2 months ago (June 6, 2008, 2:16 p.m.)
Deposited 1 year, 7 months ago (Jan. 10, 2024, 3:41 a.m.)
Indexed 19 minutes ago (Aug. 26, 2025, 8:31 p.m.)
Issued 17 years, 2 months ago (June 6, 2008)
Published 17 years, 2 months ago (June 6, 2008)
Published Print 17 years, 2 months ago (June 6, 2008)
Funders 0

None

@article{Schermelleh_2008, title={Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy}, volume={320}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1156947}, DOI={10.1126/science.1156947}, number={5881}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Schermelleh, Lothar and Carlton, Peter M. and Haase, Sebastian and Shao, Lin and Winoto, Lukman and Kner, Peter and Burke, Brian and Cardoso, M. Cristina and Agard, David A. and Gustafsson, Mats G. L. and Leonhardt, Heinrich and Sedat, John W.}, year={2008}, month=jun, pages={1332–1336} }