Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

We introduce a method for the bottom-up assembly of biomolecular structures that combines the precision of the atomic force microscope (AFM) with the selectivity of DNA hybridization. Functional units coupled to DNA oligomers were picked up from a depot area by means of a complementary DNA strand bound to an AFM tip. These units were transferred to and deposited on a target area to create basic geometrical structures, assembled from units with different functions. Each of these cut-and-paste events was characterized by single-molecule force spectroscopy and single-molecule fluorescence microscopy. Transport and deposition of more than 5000 units were achieved, with less than 10% loss in transfer efficiency.

Bibliography

Kufer, S. K., Puchner, E. M., Gumpp, H., Liedl, T., & Gaub, H. E. (2008). Single-Molecule Cut-and-Paste Surface Assembly. Science, 319(5863), 594–596.

Authors 5
  1. S. K. Kufer (first)
  2. E. M. Puchner (additional)
  3. H. Gumpp (additional)
  4. T. Liedl (additional)
  5. H. E. Gaub (additional)
References 35 Referenced 238
  1. B. A. Grzybowski, H. A. Stone, G. M. Whitesides, Nature405, 1033 (2000). (10.1038/35016528) / Nature (2000)
  2. T. Pellegrinoet al., Small1, 48 (2005). (10.1002/smll.200400071) / Small (2005)
  3. M. Ringleret al., Nano Lett.7, 2753 (2007). (10.1021/nl0712466) / Nano Lett. (2007)
  4. 10.1038/344524a0
  5. M. T. Cuberes, R. R. Schlittier, J. K. Gimzewski, Appl. Phys. Lett.69, 3016 (1996). (10.1063/1.116824) / Appl. Phys. Lett. (1996)
  6. S. J. Greisslet al., J. Phys. Chem. B108, 11556 (2004). (10.1021/jp049521p) / J. Phys. Chem. B (2004)
  7. 10.1103/PhysRevLett.49.57
  8. 10.1103/PhysRevLett.56.930
  9. 10.1126/science.3051380
  10. 10.1126/science.1411505
  11. 10.1038/47083
  12. D. Fotiadiset al., Curr. Opin. Struct. Biol.16, 252 (2006). (10.1016/j.sbi.2006.03.013) / Curr. Opin. Struct. Biol. (2006)
  13. M. Jaschkeet al., Biosens. Bioelectron.11, 601 (1996). (10.1016/0956-5663(96)83295-7) / Biosens. Bioelectron. (1996)
  14. 10.1126/science.283.5402.661
  15. 10.1126/science.289.5482.1172
  16. 10.1126/science.1990438
  17. C. M. Niemeyer, T. Sano, C. L. Smith, C. R. Cantor, Nucleic Acids Res.22, 5530 (1994). (10.1093/nar/22.25.5530) / Nucleic Acids Res. (1994)
  18. 10.1126/science.276.5313.779
  19. 10.1126/science.290.5496.1536
  20. 10.1021/ac980656z
  21. 10.1126/science.1084713
  22. A hand-waving argument: Upon separation the binding energy is overcome in the shear geometry within a much shorter distance than in the unzip geometry therefore the force to overcome the energy barrier is much lower in the unzip geometry. Because the forced unbinding of the oligomer in shear geometry is a nonequilibrium process its unbinding force is rate-dependent. In all experiments shown here the duplexes were loaded with a rate of 3000 pN/s.
  23. 10.1126/science.347575
  24. 10.1126/science.271.5250.795
  25. B. Essevaz-Roulet, U. Bockelmann, F. Heslot, Proc. Natl. Acad. Sci. U.S.A.94, 11935 (1997). (10.1073/pnas.94.22.11935) / Proc. Natl. Acad. Sci. U.S.A. (1997)
  26. M. Rief, H. Clausen-Schaumann, H. E. Gaub, Nat. Struct. Biol.6, 346 (1999). (10.1038/7582) / Nat. Struct. Biol. (1999)
  27. G. Neuert, C. H. Albrecht, H. E. Gaub, Biophys. J.93, 1215 (2007). (10.1529/biophysj.106.100511) / Biophys. J. (2007)
  28. J. Morfillet al., Biophys. J.93, 2400 (2007). (10.1529/biophysj.107.106112) / Biophys. J. (2007)
  29. T. Strunz, K. Oroszlan, R. Schafer, H. J. Guntherodt, Proc. Natl. Acad. Sci. U.S.A.96, 11277 (1999). (10.1073/pnas.96.20.11277) / Proc. Natl. Acad. Sci. U.S.A. (1999)
  30. 10.1038/380451a0
  31. 10.1126/science.1064103
  32. P. Tinnefeld, M. Sauer, Angew. Chem. Int. Ed.44, 2642 (2005). (10.1002/anie.200300647) / Angew. Chem. Int. Ed. (2005)
  33. G. Schitteret al., IEEE Trans. Control Syst. Technol.15, 906 (2007). (10.1109/TCST.2007.902953) / IEEE Trans. Control Syst. Technol. (2007)
  34. P. Vettigeret al., IBM J. Res. Devel.44, 323 (2000). (10.1147/rd.443.0323) / IBM J. Res. Devel. (2000)
  35. Helpful discussions with P. Hansma G. M. Whitesides J. Fernandez H. Heus P. Tinnefeld J. Morfill C. Albrecht and L. Whetton are gratefully acknowledged. Supported by the German Science Foundation and the Nanosystems Initiative Munich.
Dates
Type When
Created 17 years, 6 months ago (Feb. 4, 2008, 7:49 p.m.)
Deposited 1 year, 7 months ago (Jan. 10, 2024, 3:19 a.m.)
Indexed 2 weeks, 6 days ago (Aug. 2, 2025, 12:36 a.m.)
Issued 17 years, 6 months ago (Feb. 1, 2008)
Published 17 years, 6 months ago (Feb. 1, 2008)
Published Print 17 years, 6 months ago (Feb. 1, 2008)
Funders 0

None

@article{Kufer_2008, title={Single-Molecule Cut-and-Paste Surface Assembly}, volume={319}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1151424}, DOI={10.1126/science.1151424}, number={5863}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Kufer, S. K. and Puchner, E. M. and Gumpp, H. and Liedl, T. and Gaub, H. E.}, year={2008}, month=feb, pages={594–596} }