Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Protein molecules have the ability to form a rich variety of natural and artificial structures and materials. We show that amyloid fibrils, ordered supramolecular nanostructures that are self-assembled from a wide range of polypeptide molecules, have rigidities varying over four orders of magnitude, and constitute a class of high-performance biomaterials. We elucidate the molecular origin of fibril material properties and show that the major contribution to their rigidity stems from a generic interbackbone hydrogen-bonding network that is modulated by variable side-chain interactions.

Bibliography

Knowles, T. P., Fitzpatrick, A. W., Meehan, S., Mott, H. R., Vendruscolo, M., Dobson, C. M., & Welland, M. E. (2007). Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils. Science, 318(5858), 1900–1903.

Authors 7
  1. Tuomas P. Knowles (first)
  2. Anthony W. Fitzpatrick (additional)
  3. Sarah Meehan (additional)
  4. Helen R. Mott (additional)
  5. Michele Vendruscolo (additional)
  6. Christopher M. Dobson (additional)
  7. Mark E. Welland (additional)
References 31 Referenced 707
  1. D. M. Fowler, A. V. Koulov, W. E. Balch, J. W. Kelly, Trends Biochem. Sci.32, 217 (2007). (10.1016/j.tibs.2007.03.003) / Trends Biochem. Sci. (2007)
  2. 10.1146/annurev.biochem.75.101304.123901
  3. M. Tanaka, S. R. Collins, B. H. Toyama, J. S. Weissman, Nature442, 585 (2006). (10.1038/nature04922) / Nature (2006)
  4. D. M. Fowleret al., PLoS Biol.4, e6 (2005). (10.1371/journal.pbio.0040006) / PLoS Biol. (2005)
  5. 10.1038/nbt874
  6. S. Zhang, T. Holmes, C. Lockshin, A. Rich, Proc. Natl. Acad. Sci. U.S.A.90, 3334 (1993). (10.1073/pnas.90.8.3334) / Proc. Natl. Acad. Sci. U.S.A. (1993)
  7. F. Gelain, D. Bottai, A. Vescovi, S. Zhang, PLoS ONE1, e119 (2006). (10.1371/journal.pone.0000119) / PLoS ONE (2006)
  8. T. Scheibelet al., Proc. Natl. Acad. Sci. U.S.A.100, 4527 (2003). (10.1073/pnas.0431081100) / Proc. Natl. Acad. Sci. U.S.A. (2003)
  9. M. Sundeet al., J. Mol. Biol.273, 729 (1997). (10.1006/jmbi.1997.1348) / J. Mol. Biol. (1997)
  10. C. M. Dobson, Trends Biochem. Sci.24, 329 (1999). (10.1016/S0968-0004(99)01445-0) / Trends Biochem. Sci. (1999)
  11. Materials and methods are available as supporting material on Science Online.
  12. J. C. Wanget al., J. Mol. Biol.315, 601 (2002). (10.1006/jmbi.2001.5130) / J. Mol. Biol. (2002)
  13. T. P. J. Knowles, J. F. Smith, A. Craig, C. M. Dobson, M. E. Welland, Phys. Rev. Lett.96, 238301 (2006). (10.1103/PhysRevLett.96.238301) / Phys. Rev. Lett. (2006)
  14. J. F. Smith, T. P. J. Knowles, C. M. Dobson, C. E. Macphee, M. E. Welland, Proc. Natl. Acad. Sci. U.S.A.103, 15806 (2006). (10.1073/pnas.0604035103) / Proc. Natl. Acad. Sci. U.S.A. (2006)
  15. P. T. Lansbury, H. A. Lashuel, Nature443, 774 (2006). (10.1038/nature05290) / Nature (2006)
  16. S. Sambashivan, Y. Liu, M. R. Sawaya, M. Gingery, D. Eisenberg, Nature437, 266 (2005). (10.1038/nature03916) / Nature (2005)
  17. T. Lührset al., Proc. Natl. Acad. Sci. U.S.A.102, 17342 (2005). (10.1073/pnas.0506723102) / Proc. Natl. Acad. Sci. U.S.A. (2005)
  18. N. Fergusonet al., Proc. Natl. Acad. Sci. U.S.A.103, 16248 (2006). (10.1073/pnas.0607815103) / Proc. Natl. Acad. Sci. U.S.A. (2006)
  19. M. R. Sawayaet al., Nature447, 453 (2007). (10.1038/nature05695) / Nature (2007)
  20. R. Nelsonet al., Nature435, 773 (2005). (10.1038/nature03680) / Nature (2005)
  21. L. Esposito, C. Pedone, L. Vitagliano, Proc. Natl. Acad. Sci. U.S.A.103, 11533 (2006). (10.1073/pnas.0602345103) / Proc. Natl. Acad. Sci. U.S.A. (2006)
  22. R. J. Hawkins, T. C. B. McLeish, Phys. Rev. Lett.93, 098104 (2004). (10.1103/PhysRevLett.93.098104) / Phys. Rev. Lett. (2004)
  23. T. Haliloglu, I. Bahar, B. Erman, Phys. Rev. Lett.79, 3090 (1997). (10.1103/PhysRevLett.79.3090) / Phys. Rev. Lett. (1997)
  24. J. Park, B. Kahng, R. D. Kamm, W. Hwang, Biophys. J.90, 2510 (2006). (10.1529/biophysj.105.074906) / Biophys. J. (2006)
  25. 10.1103/PhysRevLett.89.248101
  26. 10.1083/jcb.120.4.923
  27. F. Vollrath, D. Porter, Soft Matter2, 377 (2006). (10.1039/b600098n) / Soft Matter (2006)
  28. M. F. Ashby D. R. H. Jones Engineering Materials: An Introduction to Their Properties and Applications (Pergamon Oxford ed. 1 1980).
  29. J. Käs, H. Strey, E. Sackmann, Nature368, 226 (1994). (10.1038/368226a0) / Nature (1994)
  30. Single-letter abbreviations for the amino acid residues are as follows: A Ala; C Cys; D Asp; E Glu; F Phe; G Gly; H His; I Ile; K Lys; L Leu; M Met; N Asn; P Pro; Q Gln; R Arg; S Ser; T Thr; V Val; W Trp; and Y Tyr.
  31. We acknowledge helpful discussions with E. Terentjev R. Hawkins S. Rogers and J. Smith as well as financial support from the Engineering and Physical Sciences Research Council and the Interdisciplinary Research Collaboration in Nanotechnology. We thank S. Shammas A. Brorsson and G. Devlin for preparing the Aβ and TTR fibrils and A. Tickler for synthesizing the TTR peptide. The work of C.M.D is supported in part by Programme Grants from the Wellcome Trust and the Leverhulme Trust.
Dates
Type When
Created 17 years, 8 months ago (Dec. 20, 2007, 8:19 p.m.)
Deposited 1 year, 7 months ago (Jan. 10, 2024, 3:27 a.m.)
Indexed 52 minutes ago (Sept. 2, 2025, 11:31 p.m.)
Issued 17 years, 8 months ago (Dec. 21, 2007)
Published 17 years, 8 months ago (Dec. 21, 2007)
Published Print 17 years, 8 months ago (Dec. 21, 2007)
Funders 0

None

@article{Knowles_2007, title={Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils}, volume={318}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1150057}, DOI={10.1126/science.1150057}, number={5858}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Knowles, Tuomas P. and Fitzpatrick, Anthony W. and Meehan, Sarah and Mott, Helen R. and Vendruscolo, Michele and Dobson, Christopher M. and Welland, Mark E.}, year={2007}, month=dec, pages={1900–1903} }