Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

The phase transition of Bose-Einstein condensation was studied in the critical regime, where fluctuations extend far beyond the length scale of thermal de Broglie waves. We used matter-wave interference to measure the correlation length of these critical fluctuations as a function of temperature. Observations of the diverging behavior of the correlation length above the critical temperature enabled us to determine the critical exponent of the correlation length for a trapped, weakly interacting Bose gas to be ν = 0.67 ± 0.13. This measurement has direct implications for the understanding of second-order phase transitions.

Bibliography

Donner, T., Ritter, S., Bourdel, T., Öttl, A., Köhl, M., & Esslinger, T. (2007). Critical Behavior of a Trapped Interacting Bose Gas. Science, 315(5818), 1556–1558.

Authors 6
  1. T. Donner (first)
  2. S. Ritter (additional)
  3. T. Bourdel (additional)
  4. A. Öttl (additional)
  5. M. Köhl (additional)
  6. T. Esslinger (additional)
References 30 Referenced 152
  1. J. Zinn Justin Quantum Field Theory and Critical Phenomena (Oxford Univ. Press Oxford 1996).
  2. 10.1103/PhysRevLett.83.1703
  3. 10.1103/PhysRevLett.87.120401
  4. 10.1103/PhysRevLett.87.120402
  5. 10.1103/PhysRevA.64.053609
  6. 10.1007/BF00682285
  7. M. J. Adriaans, D. R. Swanson, J. A. Lipa, Physica B194, 733 (1993). / Physica B (1993)
  8. 10.1103/PhysRevB.68.174518
  9. 10.1103/PhysRevA.59.4595
  10. K. Huang Statistical Mechanics (Wiley New York 1987).
  11. In the general d -dimensional case 〈Ψ † ( r )Ψ(0) 〉 ∝ r –( d –2+η) exp(– r /ξ) where η is a critical exponent. The calculated and measured values of η are on the order of 10 –2 and therefore we neglect η in our analysis.
  12. For a noninteracting gas the critical exponent can be calculated as ν = 1 for homogeneous systems and ν = ½ for harmonically trapped systems.
  13. 10.1103/PhysRev.65.117
  14. 10.1103/PhysRevA.54.R4633
  15. The numerical coefficient may be different for a trapped gas and has been omitted in ( 25 ).
  16. 10.1103/PhysRevA.69.053625
  17. 10.1103/PhysRevA.73.053604
  18. 10.1103/PhysRevLett.92.130403
  19. 10.1038/nature02530
  20. 10.1126/science.1100700
  21. 10.1038/nature04851
  22. 10.1038/35003132
  23. 10.1063/1.2216907
  24. 10.1103/PhysRevA.73.043602
  25. 10.1209/epl/i1996-00179-4
  26. 10.1103/PhysRevLett.84.4894
  27. 10.1103/PhysRevB.63.214503
  28. 10.1103/PhysRevB.74.132502
  29. 10.1016/0031-9163(66)90088-6
  30. We thank G. Blatter F. Brennecke A. Kuklov G. Shlyapnikov M. Troyer and W. Zwerger for insightful discussions. Supported by a European Union Marie Curie fellowship under contract MEIF-CT-2005-023612 (T.B.) SEP Information Sciences the Optical Lattices and Quantum Information (OLAQUI) project of the European Union and the Quantum Systems for Information Technology (QSIT) project of ETH Zürich.
Dates
Type When
Created 18 years, 5 months ago (March 15, 2007, 4:29 p.m.)
Deposited 1 year, 7 months ago (Jan. 10, 2024, 2:55 a.m.)
Indexed 4 weeks ago (Aug. 6, 2025, 8:52 a.m.)
Issued 18 years, 5 months ago (March 16, 2007)
Published 18 years, 5 months ago (March 16, 2007)
Published Print 18 years, 5 months ago (March 16, 2007)
Funders 0

None

@article{Donner_2007, title={Critical Behavior of a Trapped Interacting Bose Gas}, volume={315}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1138807}, DOI={10.1126/science.1138807}, number={5818}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Donner, T. and Ritter, S. and Bourdel, T. and Öttl, A. and Köhl, M. and Esslinger, T.}, year={2007}, month=mar, pages={1556–1558} }