Abstract
In 1873, Ernst Abbe discovered what was to become a well-known paradigm: the inability of a lens-based optical microscope to discern details that are closer together than half of the wavelength of light. However, for its most popular imaging mode, fluorescence microscopy, the diffraction barrier is crumbling. Here, I discuss the physical concepts that have pushed fluorescence microscopy to the nanoscale, once the prerogative of electron and scanning probe microscopes. Initial applications indicate that emergent far-field optical nanoscopy will have a strong impact in the life sciences and in other areas benefiting from nanoscale visualization.
References
65
Referenced
2,560
- M. Born E. Wolf Principles of Optics (Cambridge Univ. Press Cambridge 2002).
-
L. Novotny B. Hecht Principles of Nano-Optics (Cambridge Univ. Press Cambridge 2006).
(
10.1017/CBO9780511813535
) 10.1103/PhysRevLett.85.3966
10.1126/science.1137368
10.1126/science.1138746
10.1364/OL.30.000075
10.1364/OL.19.000780
10.1007/BF01081333
10.1016/0030-4018(94)90050-7
- T. Wilson C. J. R. Sheppard Theory and Practice of Scanning Optical Microscopy (Academic Press New York 1984).
-
J. B. Pawley Ed. Handbook of Biological Confocal Microscopy (Springer New York ed. 2 2006).
(
10.1007/978-0-387-45524-2
) 10.1126/science.1127344
10.1038/nmeth929
10.1529/biophysj.106.091116
- S. W. Hell, A. Schönle, in Science of Microscopy, P. W. Hawkes, J. C. Spence, Eds. (Springer, New York, 2006), pp. 790–834. / Science of Microscopy, (2006)
-
G. Toraldo di Francia, Nuovo Cimento9 (suppl.), 426 (1952).
(
10.1007/BF02903413
) / Nuovo Cimento (1952) - Focusing of a hypothetical spherical wavefront yields a spot of about one-third of the wavelength but not a far smaller one as was conjectured by Cremer et al . ( 63 ). So the actual benefit is the z -resolution improvement.
10.1016/0030-4018(92)90185-T
10.1117/12.205334
10.1016/j.tcb.2005.02.003
10.1529/biophysj.104.045815
10.1073/pnas.0608709103
10.1364/OE.15.002459
10.1364/OL.32.000259
- M. Lang J. Engelhardt S.W. Hell personal communication.
10.1046/j.1365-2818.1999.00576.x
- By not expanding the microscope's aperture the interference of unfocused waves from opposing lenses ( 64 ) produces several peaks of similar height at the focal regions which strictly cannot superresolve (arbitrary) objects along the z axis.
10.1126/science.1108408
10.1038/nbt895
10.1007/s00339-003-2292-4
10.1016/j.physleta.2004.03.082
- R. Heintzmann, T. M. Jovin, C. Cremer, J. Opt. Soc. Am. A19, 1599 (2002). / J. Opt. Soc. Am. A (2002)
10.1073/pnas.0406877102
10.1073/pnas.0506010102
10.1103/PhysRevLett.94.143903
- J. Enderlein, Appl. Phys. Lett.87, 097105 (2005). / Appl. Phys. Lett. (2005)
10.1103/PhysRevLett.88.163901
10.1073/pnas.97.15.8206
10.1073/pnas.0604965103
10.1038/nature04592
10.1126/science.1126308
10.1529/biophysj.105.079574
10.1016/j.neuroscience.2006.08.071
10.1529/biophysj.107.104497
10.1088/1367-2630/8/6/106
- V. S. Letokhov, in Ultrafast Processes in Chemistry and Photobiology, M. El-Sayed, Ed. (Blackwell Science, Oxford, 1995), pp. 195–214. / Ultrafast Processes in Chemistry and Photobiology (1995)
10.1126/science.2321027
- S. Bretschneider C. Eggeling S. W. Hell personal communication.
10.1046/j.1365-2818.2000.00710.x
10.1074/jbc.C000338200
10.1126/science.1102506
10.1088/1367-2630/8/11/275
10.1038/nmeth1006-781
10.1073/pnas.0402155101
10.1364/OPEX.13.007052
10.1364/JOSAA.16.000909
10.1364/OL.20.000237
10.1002/1361-6374(199506)3:2<64::AID-BIO2>3.0.CO;2-O
10.1073/pnas.0609643104
10.1103/PhysRevLett.94.178104
- Conceptually it is enough to establish a steep spatial gradient between the occurrence of at least two states meaning that the state need not be literally “confined.”
10.1126/science.1073765
- T. Cremer et al., Microsc. Acta81, 31 (1978). / Microsc. Acta (1978)
10.1038/366044a0
- I thank M. Lang and J. Engelhardt (DKFZ) for providing Fig. 4A and L. Meyer and G. Donnert for providing Fig. 4C. E. Rittweger and V. Westphal (Max Planck Institute) helped prepare the figures. I also thank G. Donnert C. Eggeling A. Egner S. Jakobs L. Kastrup B. Rankin V. Westphal K. Willig and A. Schönle for reading of the manuscript. Funding was from the Max Planck Society Deutsche Forschungsgemeinschaft Volkswagen Foundation Landesstiftung Baden-Württemberg European Union (New and Emerging Science and Technology SPOTLITE) and German Ministry of Research and Education. The author consults for Leica Microsystems CMS Gmbh Mannheim Germany.
Dates
Type | When |
---|---|
Created | 18 years, 3 months ago (May 25, 2007, 6:36 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 10, 2024, 3:38 a.m.) |
Indexed | 12 hours, 2 minutes ago (Sept. 3, 2025, 7:01 a.m.) |
Issued | 18 years, 3 months ago (May 25, 2007) |
Published | 18 years, 3 months ago (May 25, 2007) |
Published Print | 18 years, 3 months ago (May 25, 2007) |
@article{Hell_2007, title={Far-Field Optical Nanoscopy}, volume={316}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1137395}, DOI={10.1126/science.1137395}, number={5828}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Hell, Stefan W.}, year={2007}, month=may, pages={1153–1158} }