10.1126/science.1137395
Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

In 1873, Ernst Abbe discovered what was to become a well-known paradigm: the inability of a lens-based optical microscope to discern details that are closer together than half of the wavelength of light. However, for its most popular imaging mode, fluorescence microscopy, the diffraction barrier is crumbling. Here, I discuss the physical concepts that have pushed fluorescence microscopy to the nanoscale, once the prerogative of electron and scanning probe microscopes. Initial applications indicate that emergent far-field optical nanoscopy will have a strong impact in the life sciences and in other areas benefiting from nanoscale visualization.

Bibliography

Hell, S. W. (2007). Far-Field Optical Nanoscopy. Science, 316(5828), 1153–1158.

Authors 1
  1. Stefan W. Hell (first)
References 65 Referenced 2,560
  1. M. Born E. Wolf Principles of Optics (Cambridge Univ. Press Cambridge 2002).
  2. L. Novotny B. Hecht Principles of Nano-Optics (Cambridge Univ. Press Cambridge 2006). (10.1017/CBO9780511813535)
  3. 10.1103/PhysRevLett.85.3966
  4. 10.1126/science.1137368
  5. 10.1126/science.1138746
  6. 10.1364/OL.30.000075
  7. 10.1364/OL.19.000780
  8. 10.1007/BF01081333
  9. 10.1016/0030-4018(94)90050-7
  10. T. Wilson C. J. R. Sheppard Theory and Practice of Scanning Optical Microscopy (Academic Press New York 1984).
  11. J. B. Pawley Ed. Handbook of Biological Confocal Microscopy (Springer New York ed. 2 2006). (10.1007/978-0-387-45524-2)
  12. 10.1126/science.1127344
  13. 10.1038/nmeth929
  14. 10.1529/biophysj.106.091116
  15. S. W. Hell, A. Schönle, in Science of Microscopy, P. W. Hawkes, J. C. Spence, Eds. (Springer, New York, 2006), pp. 790–834. / Science of Microscopy, (2006)
  16. G. Toraldo di Francia, Nuovo Cimento9 (suppl.), 426 (1952). (10.1007/BF02903413) / Nuovo Cimento (1952)
  17. Focusing of a hypothetical spherical wavefront yields a spot of about one-third of the wavelength but not a far smaller one as was conjectured by Cremer et al . ( 63 ). So the actual benefit is the z -resolution improvement.
  18. 10.1016/0030-4018(92)90185-T
  19. 10.1117/12.205334
  20. 10.1016/j.tcb.2005.02.003
  21. 10.1529/biophysj.104.045815
  22. 10.1073/pnas.0608709103
  23. 10.1364/OE.15.002459
  24. 10.1364/OL.32.000259
  25. M. Lang J. Engelhardt S.W. Hell personal communication.
  26. 10.1046/j.1365-2818.1999.00576.x
  27. By not expanding the microscope's aperture the interference of unfocused waves from opposing lenses ( 64 ) produces several peaks of similar height at the focal regions which strictly cannot superresolve (arbitrary) objects along the z axis.
  28. 10.1126/science.1108408
  29. 10.1038/nbt895
  30. 10.1007/s00339-003-2292-4
  31. 10.1016/j.physleta.2004.03.082
  32. R. Heintzmann, T. M. Jovin, C. Cremer, J. Opt. Soc. Am. A19, 1599 (2002). / J. Opt. Soc. Am. A (2002)
  33. 10.1073/pnas.0406877102
  34. 10.1073/pnas.0506010102
  35. 10.1103/PhysRevLett.94.143903
  36. J. Enderlein, Appl. Phys. Lett.87, 097105 (2005). / Appl. Phys. Lett. (2005)
  37. 10.1103/PhysRevLett.88.163901
  38. 10.1073/pnas.97.15.8206
  39. 10.1073/pnas.0604965103
  40. 10.1038/nature04592
  41. 10.1126/science.1126308
  42. 10.1529/biophysj.105.079574
  43. 10.1016/j.neuroscience.2006.08.071
  44. 10.1529/biophysj.107.104497
  45. 10.1088/1367-2630/8/6/106
  46. V. S. Letokhov, in Ultrafast Processes in Chemistry and Photobiology, M. El-Sayed, Ed. (Blackwell Science, Oxford, 1995), pp. 195–214. / Ultrafast Processes in Chemistry and Photobiology (1995)
  47. 10.1126/science.2321027
  48. S. Bretschneider C. Eggeling S. W. Hell personal communication.
  49. 10.1046/j.1365-2818.2000.00710.x
  50. 10.1074/jbc.C000338200
  51. 10.1126/science.1102506
  52. 10.1088/1367-2630/8/11/275
  53. 10.1038/nmeth1006-781
  54. 10.1073/pnas.0402155101
  55. 10.1364/OPEX.13.007052
  56. 10.1364/JOSAA.16.000909
  57. 10.1364/OL.20.000237
  58. 10.1002/1361-6374(199506)3:2<64::AID-BIO2>3.0.CO;2-O
  59. 10.1073/pnas.0609643104
  60. 10.1103/PhysRevLett.94.178104
  61. Conceptually it is enough to establish a steep spatial gradient between the occurrence of at least two states meaning that the state need not be literally “confined.”
  62. 10.1126/science.1073765
  63. T. Cremer et al., Microsc. Acta81, 31 (1978). / Microsc. Acta (1978)
  64. 10.1038/366044a0
  65. I thank M. Lang and J. Engelhardt (DKFZ) for providing Fig. 4A and L. Meyer and G. Donnert for providing Fig. 4C. E. Rittweger and V. Westphal (Max Planck Institute) helped prepare the figures. I also thank G. Donnert C. Eggeling A. Egner S. Jakobs L. Kastrup B. Rankin V. Westphal K. Willig and A. Schönle for reading of the manuscript. Funding was from the Max Planck Society Deutsche Forschungsgemeinschaft Volkswagen Foundation Landesstiftung Baden-Württemberg European Union (New and Emerging Science and Technology SPOTLITE) and German Ministry of Research and Education. The author consults for Leica Microsystems CMS Gmbh Mannheim Germany.
Dates
Type When
Created 18 years, 3 months ago (May 25, 2007, 6:36 a.m.)
Deposited 1 year, 7 months ago (Jan. 10, 2024, 3:38 a.m.)
Indexed 12 hours, 2 minutes ago (Sept. 3, 2025, 7:01 a.m.)
Issued 18 years, 3 months ago (May 25, 2007)
Published 18 years, 3 months ago (May 25, 2007)
Published Print 18 years, 3 months ago (May 25, 2007)
Funders 0

None

@article{Hell_2007, title={Far-Field Optical Nanoscopy}, volume={316}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1137395}, DOI={10.1126/science.1137395}, number={5828}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Hell, Stefan W.}, year={2007}, month=may, pages={1153–1158} }