Abstract
Emerging complex functional materials often have atomic order limited to the nanoscale. Examples include nanoparticles, species encapsulated in mesoporous hosts, and bulk crystals with intrinsic nanoscale order. The powerful methods that we have for solving the atomic structure of bulk crystals fail for such materials. Currently, no broadly applicable, quantitative, and robust methods exist to replace crystallography at the nanoscale. We provide an overview of various classes of nanostructured materials and review the methods that are currently used to study their structure. We suggest that successful solutions to these nanostructure problems will involve interactions among researchers from materials science, physics, chemistry, computer science, and applied mathematics, working within a “complex modeling” paradigm that combines theory and experiment in a self-consistent computational framework.
References
54
Referenced
630
10.1039/b309577k
10.1080/00150198708016945
10.1126/science.1092963
10.1103/PhysRevLett.96.045901
10.1126/science.1107559
10.1063/1.168756
10.1021/ja00053a020
10.1021/ja002261e
10.1063/1.366536
10.1126/science.1130101
10.1146/annurev.ms.19.080189.002351
10.1126/science.1098454
10.1038/nature01845
- R. Bates, Optik61, 247 (1982). / Optik (1982)
10.1364/JOSAA.14.000568
- R. W. Gershberg, W. O. Saxton, Optik35, 237 (1972). / Optik (1972)
10.1038/22498
10.1126/science.1083887
-
T. Egami S. J. L. Billinge Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon Oxford 2003).
(
10.1016/S1369-7021(03)00635-7
) - T. R. Welberry Diffuse X-ray Scattering and Models of Disorder (Oxford Univ. Press Oxford 2004).
10.1088/0953-8984/13/46/201
- R. A. Young Ed. The Rietveld Method vol. 5 of International Union of Crystallography Monographs on Crystallography (Oxford Univ. Press Oxford 1993).
10.1107/S0108767391011327
10.1107/S0021889899003532
10.1107/S002188980100930X
10.1038/nature04556
10.1063/1.2149852
10.1126/science.291.5503.458
10.1038/363432a0
10.1107/S0909049500020276
10.1103/PhysRevB.74.224104
10.1016/j.ccr.2004.02.014
10.1103/PhysRevB.71.214307
10.1002/1521-3773(20020902)41:17<3096::AID-ANIE3096>3.0.CO;2-X
10.1046/j.1365-2818.2003.01240.x
10.1103/PhysRevLett.96.215501
10.1021/jp0130463
10.1557/mrs2006.4
10.1103/PhysRevB.70.172201
10.1126/science.1079121
10.1021/nl060458k
10.1063/1.1991989
- R. L. Withers, Z. Kristallogr.220, 1027 (2005). / Z. Kristallogr. (2005)
10.1016/S0304-3991(98)00038-2
10.1016/j.micron.2003.12.002
10.1088/0034-4885/68/12/R06
10.1073/pnas.0307302101
10.1038/nature04973
10.1038/nature04487
10.1016/0301-0104(95)00357-6
10.1103/PhysRevB.71.054204
10.1103/PhysRevLett.93.146403
10.1103/PhysRevLett.89.075502
- Many people contributed to this work in many ways but we would especially like to acknowledge P. Duxbury T. Vanderah S. Haile M. Kanatzidis S. Sinnott L. Bartolo M. Thorpe H. Kim and E. Cockayne for useful contributions and T. Pinnavaia for allowing us to use an unpublished image. S.J.L.B. would like to thank his group members past and present for their hard work and important contributions to nanostructure research. Work in the S.J.L.B. group benefited through support from NSF (grant DMR-0304391) and the U.S. Department of Energy's Office of Basic Energy Sciences (grant DE-FG02-97ER45651).
Dates
Type | When |
---|---|
Created | 18 years, 3 months ago (April 26, 2007, 4:38 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 10, 2024, 3:40 a.m.) |
Indexed | 2 weeks, 1 day ago (Aug. 7, 2025, 4:56 a.m.) |
Issued | 18 years, 3 months ago (April 27, 2007) |
Published | 18 years, 3 months ago (April 27, 2007) |
Published Print | 18 years, 3 months ago (April 27, 2007) |
@article{Billinge_2007, title={The Problem with Determining Atomic Structure at the Nanoscale}, volume={316}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1135080}, DOI={10.1126/science.1135080}, number={5824}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Billinge, Simon J. L. and Levin, Igor}, year={2007}, month=apr, pages={561–565} }