Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

We have produced a stretchable form of silicon that consists of submicrometer single-crystal elements structured into shapes with microscale, periodic, wavelike geometries. When supported by an elastomeric substrate, this “wavy” silicon can be reversibly stretched and compressed to large levels of strain without damaging the silicon. The amplitudes and periods of the waves change to accommodate these deformations, thereby avoiding substantial strains in the silicon itself. Dielectrics, patterns of dopants, electrodes, and other elements directly integrated with the silicon yield fully formed, high-performance “wavy” metal oxide semiconductor field-effect transistors, p-n diodes, and other devices for electronic circuits that can be stretched or compressed to similarly large levels of strain.

Bibliography

Khang, D.-Y., Jiang, H., Huang, Y., & Rogers, J. A. (2006). A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates. Science, 311(5758), 208–212.

Authors 4
  1. Dahl-Young Khang (first)
  2. Hanqing Jiang (additional)
  3. Young Huang (additional)
  4. John A. Rogers (additional)
References 34 Referenced 1,599
  1. 10.1038/nature02498
  2. For recent progress and reviews see Proc. IEEE 93 issues 7 and 8 (2005).
  3. 10.1073/pnas.091588098
  4. 10.1126/science.1069153
  5. 10.1038/414599a
  6. 10.1063/1.1448659
  7. Y. Chen et al., Nature423, 136 (2003). / Nature (2003)
  8. 10.1116/1.1795249
  9. 10.1109/TED.2003.822873
  10. 10.1073/pnas.0401918101
  11. 10.1016/j.sna.2004.10.012
  12. J. Vandeputteet al., U.S. Patent6,580,151 (2003). / U.S. Patent (2003)
  13. 10.1063/1.1868868
  14. 10.1063/1.1866637
  15. H. Gleskova et al., J. Noncryst. Solids338, 732 (2004). / J. Noncryst. Solids (2004)
  16. 10.1063/1.1947380
  17. 10.1038/nature01996
  18. 10.1063/1.123478
  19. 10.1073/pnas.162128299
  20. 10.1073/pnas.0502392102
  21. 10.1109/JPROC.2005.851502
  22. 10.1063/1.1565683
  23. 10.1002/adma.200306107
  24. 10.1016/S0032-3861(98)00775-7
  25. 10.1016/j.bios.2004.01.033
  26. 10.1115/1.1756141
  27. 10.1016/j.jmps.2005.03.007
  28. Properties of Silicon (INSPEC Institution of Electrical Engineers New York 1988).
  29. 10.1063/1.1289816
  30. N. Bowden et al., Nature146, 146 (1998). / Nature (1998)
  31. 10.1021/la991302l
  32. 10.1038/nmat1175
  33. Materials and methods are available as supporting material on Science Online .
  34. We thank T. Banks for help with processing using the facilities at the Frederick Seitz Materials Research Laboratory. This work was supported by the Defense Advanced Research Projects Agency–funded Air Force Research Laboratory–managed Macroelectronics Program Contract FA8650-04-C-7101 by the U.S. Department of Energy under grant DEFG02-91-ER45439 and by NSF under grant DMI-0328162.
Dates
Type When
Created 19 years, 8 months ago (Dec. 15, 2005, 8:44 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 9:32 p.m.)
Indexed 9 minutes ago (Aug. 28, 2025, 10:16 p.m.)
Issued 19 years, 7 months ago (Jan. 13, 2006)
Published 19 years, 7 months ago (Jan. 13, 2006)
Published Print 19 years, 7 months ago (Jan. 13, 2006)
Funders 0

None

@article{Khang_2006, title={A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates}, volume={311}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1121401}, DOI={10.1126/science.1121401}, number={5758}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Khang, Dahl-Young and Jiang, Hanqing and Huang, Young and Rogers, John A.}, year={2006}, month=jan, pages={208–212} }