Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

We have studied two-body correlations of atoms in an expanding cloud above and below the Bose-Einstein condensation threshold. The observed correlation function for a thermal cloud shows a bunching behavior, whereas the correlation is flat for a coherent sample. These quantum correlations are the atomic analog of the Hanbury Brown Twiss effect. We observed the effect in three dimensions and studied its dependence on cloud size.

Bibliography

Schellekens, M., Hoppeler, R., Perrin, A., Gomes, J. V., Boiron, D., Aspect, A., & Westbrook, C. I. (2005). Hanbury Brown Twiss Effect for Ultracold Quantum Gases. Science, 310(5748), 648–651.

Authors 7
  1. M. Schellekens (first)
  2. R. Hoppeler (additional)
  3. A. Perrin (additional)
  4. J. Viana Gomes (additional)
  5. D. Boiron (additional)
  6. A. Aspect (additional)
  7. C. I. Westbrook (additional)
References 27 Referenced 274
  1. 10.1038/177027a0
  2. 10.1016/0031-9163(66)91034-1
  3. 10.1103/PhysRevLett.10.84
  4. R. J. Glauber, Quantum Optics and Electronics, C. DeWitt, A. Blandin, C. Cohen-Tannoudji, Eds. (Gordon and Breach, New York, 1965), p. 63. / Quantum Optics and Electronics (1965)
  5. G. Baym, Acta Phys. Pol. B29, 1839 (1998). / Acta Phys. Pol. B (1998)
  6. B. Berne R. Pecora Dynamic Light Scattering (Dover New York 2000).
  7. 10.1119/1.1937827
  8. 10.1038/1781046a0
  9. J. S. Bell Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press Cambridge ed. 2 2004). (10.1017/CBO9780511815676)
  10. 10.1103/PhysRevLett.77.3090
  11. 10.1038/nature03500
  12. 10.1103/PhysRevLett.94.110401
  13. 10.1126/science.284.5412.296
  14. 10.1126/science.284.5412.299
  15. 10.1038/nature00911
  16. Y. Kagan, B. V. Svistunov, G. V. Shlyapnikov, Sov. Phys. JETP42, 209 (1985). / Sov. Phys. JETP (1985)
  17. 10.1103/PhysRevLett.79.337
  18. 10.1103/PhysRevLett.92.190401
  19. 10.1126/science.1060622
  20. O. Jagutzki et al., Nucl. Instrum. Methods Phys. Res. A477, 244 (2004). / Nucl. Instrum. Methods Phys. Res. A (2004)
  21. See supporting online materials on Science Online for details.
  22. 10.1103/PhysRevA.59.4595
  23. 10.1038/18395
  24. 10.1103/PhysRevLett.89.020401
  25. 10.1103/PhysRevLett.93.053001
  26. 10.1103/PhysRevLett.95.090404
  27. After submission of this manuscript we became aware of a related experiment concerning atom correlations in an atom laser ( 26 ). We thank R. Sellem of the Détection Temps Position Image Technology Division (supported by the Mission Ressources et Compétences Technologiques–CNRS Federation FR2764 and by the Université Paris-Sud) for a decisive role in the development of the time-to-digital converter and O. Jagutzki for advice on delay lines.
Dates
Type When
Created 19 years, 11 months ago (Sept. 15, 2005, 8:35 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 8:53 p.m.)
Indexed 6 days, 8 hours ago (Aug. 23, 2025, 9:39 p.m.)
Issued 19 years, 10 months ago (Oct. 28, 2005)
Published 19 years, 10 months ago (Oct. 28, 2005)
Published Print 19 years, 10 months ago (Oct. 28, 2005)
Funders 0

None

@article{Schellekens_2005, title={Hanbury Brown Twiss Effect for Ultracold Quantum Gases}, volume={310}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1118024}, DOI={10.1126/science.1118024}, number={5748}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Schellekens, M. and Hoppeler, R. and Perrin, A. and Gomes, J. Viana and Boiron, D. and Aspect, A. and Westbrook, C. I.}, year={2005}, month=oct, pages={648–651} }