Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Transformation and conjugation permit the passage of DNA through the bacterial membranes and represent dominant modes for the transfer of genetic information between bacterial cells or between bacterial and eukaryotic cells. As such, they are responsible for the spread of fitness-enhancing traits, including antibiotic resistance. Both processes usually involve the recognition of double-stranded DNA, followed by the transfer of single strands. Elaborate molecular machines are responsible for negotiating the passage of macromolecular DNA through the layers of the cell surface. All or nearly all the machine components involved in transformation and conjugation have been identified, and here we present models for their roles in DNA transport.

Bibliography

Chen, I., Christie, P. J., & Dubnau, D. (2005). The Ins and Outs of DNA Transfer in Bacteria. Science, 310(5753), 1456–1460.

Authors 3
  1. Inês Chen (first)
  2. Peter J. Christie (additional)
  3. David Dubnau (additional)
References 81 Referenced 369
  1. 10.1038/35080005
  2. 10.1093/oxfordjournals.jhered.a111361
  3. 10.1016/j.resmic.2004.01.012
  4. 10.1128/JB.182.10.2761-2770.2000
  5. 10.1046/j.1365-2958.2001.02502.x
  6. 10.1128/JB.181.22.6865-6875.1999
  7. 10.1111/j.1365-2958.2005.04535.x
  8. 10.1128/jb.177.11.3045-3051.1995
  9. 10.1046/j.1365-2958.1999.01170.x
  10. 10.1046/j.1365-2958.2002.03013.x
  11. 10.1073/pnas.56.5.1441
  12. 10.1046/j.1365-2958.2001.02406.x
  13. 10.1016/0378-1119(80)90071-2
  14. 10.1128/jb.173.12.3911-3913.1991
  15. 10.1126/science.7542802
  16. 10.1016/0378-1119(91)90457-M
  17. 10.1074/jbc.M405971200
  18. 10.1111/j.1365-2958.1993.tb01949.x
  19. 10.1093/emboj/19.10.2221
  20. 10.1128/JB.185.9.2749-2758.2003
  21. 10.1042/bj20020194
  22. 10.1111/j.1365-2958.2004.04307.x
  23. 10.1128/JB.180.1.41-45.1998
  24. 10.1046/j.1365-2958.1998.00989.x
  25. I. Chen R. Provvedi D. Dubnau unpublished data.
  26. 10.1038/nrmicro885
  27. 10.1038/nrmicro844
  28. M. Koomey personal communication.
  29. 10.1016/S0962-8924(99)01634-7
  30. 10.1111/j.1365-2958.2005.04703.x
  31. 10.1038/nsmb783
  32. 10.1073/pnas.242523299
  33. 10.1111/j.1574-6968.1996.tb08099.x
  34. I. Draskovic, D. Dubnau, Mol. Microbiol.55, 881 (2005). (10.1111/j.1365-2958.2004.04430.x) / Mol. Microbiol. (2005)
  35. 10.1111/j.1365-2958.1994.tb00415.x
  36. 10.1016/j.cell.2005.04.035
  37. 10.1046/j.1365-2958.2003.03702.x
  38. 10.1016/j.cell.2005.04.036
  39. 10.1016/S0006-3495(93)81035-X
  40. 10.1038/nrmicro1235
  41. 10.1016/S0378-1097(03)00430-0
  42. 10.1128/MMBR.67.2.277-301.2003
  43. 10.2174/1381612043384817
  44. 10.1016/j.plasmid.2005.02.001
  45. 10.1146/annurev.micro.58.030603.123630
  46. 10.1016/j.femsle. 2005.09.030
  47. 10.1038/nrmicro753
  48. 10.1111/j.1365-2958.2005.04521.x
  49. 10.1038/nsb1017
  50. 10.1046/j.1365-2958.2001.02582.x
  51. 10.1073/pnas.0406241102
  52. 10.1073/pnas.0406239101
  53. S. R. Lybarger, M. Sandkvist, Science304, 1122 (2005). / Science (2005)
  54. 10.1073/pnas.0503402102
  55. 10.1128/JB.185.15.4371-4381.2003
  56. 10.1074/jbc.M207250200
  57. 10.1046/j.1365-2958.2003.03669.x
  58. 10.1126/science.1095211
  59. 10.1038/35054586
  60. 10.1093/emboj/cdg223
  61. 10.1128/JB.182.10.2761-2770.2000
  62. 10.1111/j.1365-2958.2004.04345.x
  63. 10.1074/jbc.M502347200
  64. 10.1016/j.jmb.2004.06.052
  65. 10.1099/00221287-147-12-3201
  66. D. G. Thanassi, J. Mol. Microbiol. Biotechnol.4, 11 (2002). / J. Mol. Microbiol. Biotechnol. (2002)
  67. 10.1128/JB.187.10.3486-3495.2005
  68. 10.1016/0005-2728(94)90072-8
  69. 10.1073/pnas.0405843101
  70. 10.1128/JB.186.16.5480-5485.2004
  71. G. M. Dunny, B. A. Leonard, Annu. Rev. Microbiol.1997, 527 (1997). / Annu. Rev. Microbiol. (1997)
  72. 10.1128/JB.182.10.2709-2715.2000
  73. 10.1016/j.devcel.2005.05.004
  74. 10.1128/JB.182.23.6751-6761.2000
  75. 10.1128/JB.186.6.1606-1613.2004
  76. 10.1073/pnas.0505290102
  77. 10.1128/JB.180.24.6538-6543.1998
  78. 10.1002/j.1460-2075.1995.tb07323.x
  79. 10.1073/pnas.98.4.1871
  80. 10.1038/ng779
  81. Work in the Christie laboratory is supported by NIH grant GM48746 and in the Dubnau lab by GM057720 and GM43756. We apologize for the omission of many primary references because of space limitations.
Dates
Type When
Created 19 years, 9 months ago (Dec. 1, 2005, 6:16 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 9:22 p.m.)
Indexed 4 days, 1 hour ago (Aug. 29, 2025, 5:58 a.m.)
Issued 19 years, 9 months ago (Dec. 2, 2005)
Published 19 years, 9 months ago (Dec. 2, 2005)
Published Print 19 years, 9 months ago (Dec. 2, 2005)
Funders 0

None

@article{Chen_2005, title={The Ins and Outs of DNA Transfer in Bacteria}, volume={310}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1114021}, DOI={10.1126/science.1114021}, number={5753}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Chen, Inês and Christie, Peter J. and Dubnau, David}, year={2005}, month=dec, pages={1456–1460} }