Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

A wide variety of experimental results and theoretical investigations in recent years have convincingly demonstrated that several transition metal oxides and other materials have dominant states that are not spatially homogeneous. This occurs in cases in which several physical interactions—spin, charge, lattice, and/or orbital—are simultaneously active. This phenomenon causes interesting effects, such as colossal magnetoresistance, and it also appears crucial to understand the high-temperature superconductors. The spontaneous emergence of electronic nanometer-scale structures in transition metal oxides, and the existence of many competing states, are properties often associated with complex matter where nonlinearities dominate, such as soft materials and biological systems. This electronic complexity could have potential consequences for applications of correlated electronic materials, because not only charge (semiconducting electronic), or charge and spin (spintronics) are of relevance, but in addition the lattice and orbital degrees of freedom are active, leading to giant responses to small perturbations. Moreover, several metallic and insulating phases compete, increasing the potential for novel behavior.

Bibliography

Dagotto, E. (2005). Complexity in Strongly Correlated Electronic Systems. Science, 309(5732), 257–262.

Authors 1
  1. Elbio Dagotto (first)
References 78 Referenced 1,793
  1. 10.1126/science.177.4047.393
  2. 10.1126/science.284.5411.87
  3. 10.1126/science.283.5410.2034
  4. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep.344, 1 (2001). (10.1016/S0370-1573(00)00121-6) / Phys. Rep. (2001)
  5. E. Dagotto Nanoscale Phase Separation and Colossal Magnetoresistance (Springer-Verlag Berlin 2002). (10.1007/978-3-662-05244-0)
  6. 10.1126/science.288.5465.462
  7. M. Salamon, M. Jaime, Rev. Mod. Phys.73, 583 (2001). (10.1103/RevModPhys.73.583) / Rev. Mod. Phys. (2001)
  8. N. Mathur, P. Littlewood, Phys. Today56, 26 (2003). / Phys. Today (2003)
  9. K. H. Ahn, T. Lookman, A. R. Bishop, Nature428, 401 (2004). (10.1038/nature02364) / Nature (2004)
  10. J. Burgyet al., Phys. Rev. Lett.87, 277202 (2001). (10.1103/PhysRevLett.87.277202) / Phys. Rev. Lett. (2001)
  11. J. Burgy, A. Moreo, E. Dagotto, Phys. Rev. Lett.92, 097202 (2004). (10.1103/PhysRevLett.92.097202) / Phys. Rev. Lett. (2004)
  12. S. Yunoki et al., Phys. Rev. Lett.80, 845 (1998). (10.1103/PhysRevLett.80.845) / Phys. Rev. Lett. (1998)
  13. M. Uehara, S. Mori, C. H. Chen, S.-W. Cheong, Nature399, 560 (1999). (10.1038/21142) / Nature (1999)
  14. D. Louca, T. Egami, E. L. Brosha, H. Roder, A. R. Bishop, Phys. Rev. B56, R8475 (1997). (10.1103/PhysRevB.56.R8475) / Phys. Rev. B (1997)
  15. Y. Tomioka, Y. Tokura, Phys. Rev. B70, 014432 (2004). (10.1103/PhysRevB.70.014432) / Phys. Rev. B (2004)
  16. D. Akahoshi et al., Phys. Rev. Lett.90, 177203 (2003). (10.1103/PhysRevLett.90.177203) / Phys. Rev. Lett. (2003)
  17. 10.1103/PhysRevB.71.014514
  18. H. Rho et al., Phys. Rev. Lett.88, 127401 (2002). (10.1103/PhysRevLett.88.127401) / Phys. Rev. Lett. (2002)
  19. Y. Motome, N. Furukawa, N. Nagaosa, Phys. Rev. Lett.91, 167204 (2003). (10.1103/PhysRevLett.91.167204) / Phys. Rev. Lett. (2003)
  20. H. Aliaga et al., Phys. Rev. B68, 104405 (2003). (10.1103/PhysRevB.68.104405) / Phys. Rev. B (2003)
  21. 10.1103/PhysRevLett.85.836
  22. J. Schmalian, P. Wolynes, MRS Bull.30, 433 (2005). (10.1557/mrs2005.119) / MRS Bull. (2005)
  23. G. C. Milward, M. J. Calderon, P. B. Littlewood, Nature433, 607 (2005). (10.1038/nature03300) / Nature (2005)
  24. 10.1126/science.275.5303.1089
  25. S. Sanna G. Allodi G. Concas A. H. Hillier R. De Renzi; available online at http://arxiv.org/abs/cond-mat/0403608.
  26. 10.1103/PhysRevLett.93.207001
  27. See, for example, fig. 4 of T. Sasaki et al., Phys. Rev. B 65, 060505 (2002). (10.1103/PhysRevB.65.060505) / Phys. Rev. B (2002)
  28. 10.1038/375561a0
  29. 10.1073/pnas.96.16.8814
  30. J. Zaanen, Nature404, 714 (2000), and references therein. / Nature (2000)
  31. 10.1103/PhysRevLett.80.1272
  32. B. Stojkovíc et al., Phys. Rev. Lett.82, 4679 (1999). (10.1103/PhysRevLett.82.4679) / Phys. Rev. Lett. (1999)
  33. 10.1103/PhysRevLett.91.057004
  34. S. Sorella et al., Phys. Rev. Lett.88, 117002 (2002). (10.1103/PhysRevLett.88.117002) / Phys. Rev. Lett. (2002)
  35. 10.1038/nature02574
  36. 10.1038/nature02576
  37. E. Dagotto, T. M. Rice, Science271, 618 (1996). (10.1126/science.271.5249.618) / Science (1996)
  38. 10.1038/415412a
  39. 10.1103/PhysRevLett.93.097004
  40. 10.1038/nature02861
  41. 10.1126/science.1093384
  42. C. C. Homes et al., Nature430, 539 (2004). (10.1038/nature02673) / Nature (2004)
  43. C. C. Homes S. V. Dordevic T. Valla M. Strongin; available online at http://arxiv.org/abs/cond-mat/0410719.
  44. 10.1038/31177
  45. I. Bozovic et al., Phys. Rev. Lett.93, 157002 (2004). (10.1103/PhysRevLett.93.157002) / Phys. Rev. Lett. (2004)
  46. 10.1038/374434a0
  47. T. Vicsek, Nature418, 131 (2002). (10.1038/418131a) / Nature (2002)
  48. T. Witten, Rev. Mod. Phys.71, S367 (1999). (10.1103/RevModPhys.71.S367) / Rev. Mod. Phys. (1999)
  49. R. B. Laughlin, D. Pines, Proc. Natl. Acad. Sci. U.S.A.97, 28 (2000). (10.1073/pnas.97.1.28) / Proc. Natl. Acad. Sci. U.S.A. (2000)
  50. E. Miranda and V. Dobrosavljevic Rep. Prog. Phys. in press; preprint available online at http://arxiv.org/abs/cond-mat/cond-mat/0504411.
  51. V. Sidorov et al., Phys. Rev. Lett.89, 157004 (2002). (10.1103/PhysRevLett.89.157004) / Phys. Rev. Lett. (2002)
  52. V. Dobrosavljevic, D. Tanaskovic, A. A. Pastor, Phys. Rev. Lett.90, 016402 (2003). (10.1103/PhysRevLett.90.016402) / Phys. Rev. Lett. (2003)
  53. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett.94, 056404 (2005). (10.1103/PhysRevLett.94.056404) / Phys. Rev. Lett. (2005)
  54. S. Sachdev Quantum Phase Transitions (Cambridge Univ. Press Cambridge 1999). (10.1017/CBO9780511622540)
  55. S. Bogdanovich, D. Popovic, Phys. Rev. Lett.88, 236401 (2002). (10.1103/PhysRevLett.88.236401) / Phys. Rev. Lett. (2002)
  56. P. L. Kuhns et al., Phys. Rev. Lett.91, 127202 (2003). (10.1103/PhysRevLett.91.127202) / Phys. Rev. Lett. (2003)
  57. P. Limelette et al., Phys. Rev. Lett.91, 016401 (2003). (10.1103/PhysRevLett.91.016401) / Phys. Rev. Lett. (2003)
  58. K. Miyagawa, A. Kawamoto, K. Kanoda, Phys. Rev. Lett.89, 017003 (2002). (10.1103/PhysRevLett.89.017003) / Phys. Rev. Lett. (2002)
  59. G. Gruner Density Waves in Solids (Addison-Wesley Boston 1994).
  60. 10.1103/RevModPhys.75.657
  61. S. Q. Liu, N. J. Wu, A. Ignatiev, Appl. Phys. Lett.76, 2749 (2000). (10.1063/1.126464) / Appl. Phys. Lett. (2000)
  62. M. Rozenberg, I. H. Inoue, M. J. Sanchez, Phys. Rev. Lett.92, 178302 (2004). (10.1103/PhysRevLett.92.178302) / Phys. Rev. Lett. (2004)
  63. T. Kimura et al., Nature426, 55 (2003). (10.1038/nature02018) / Nature (2003)
  64. 10.1126/science.1098867
  65. R. Mahendiran et al., Phys. Rev. Lett.89, 286602 (2002). (10.1103/PhysRevLett.89.286602) / Phys. Rev. Lett. (2002)
  66. P. Levy, A. G. Leyva, H. E. Troiani, R. D. Sanchez, Appl. Phys. Lett.83, 5247 (2003). (10.1063/1.1635663) / Appl. Phys. Lett. (2003)
  67. L. Hueso, N. Mathur, Nature427, 301 (2004). (10.1038/427301a) / Nature (2004)
  68. R. Blinc et al., Phys. Rev. Lett.83, 424 (1999), and references therein. (10.1103/PhysRevLett.83.424) / Phys. Rev. Lett. (1999)
  69. 10.1038/nature01878
  70. H. Frauenfelder, P. G. Wolynes, R. H. Austin, Rev. Mod. Phys.71, S419 (1999). (10.1103/RevModPhys.71.S419) / Rev. Mod. Phys. (1999)
  71. I. Deac, J. Mitchell, P. Schiffer, Phys. Rev. B63, 172408 (2001). (10.1103/PhysRevB.63.172408) / Phys. Rev. B (2001)
  72. J. Sacanell F. Parisi P. Levy L. Ghivelder Physica B 354 43 (2004); also available online at http://arxiv.org/abs/cond-mat/0412499. (10.1016/j.physb.2004.09.017)
  73. C. J. Horowitz, M. A. Perez-Garcia, J. Piekarewicz, Phys. Rev. C69, 045804 (2004), and references therein. (10.1103/PhysRevC.69.045804) / Phys. Rev. C (2004)
  74. J. F. Mitchell et al., J. Phys. Chem. B105, 10731 (2001). / J. Phys. Chem. B (2001)
  75. S. Nakatsuji, Y. Maeno, Phys. Rev. Lett.84, 2666 (2000). (10.1103/PhysRevLett.84.2666) / Phys. Rev. Lett. (2000)
  76. S. Nakatsuji et al., Phys. Rev. Lett.93, 146401 (2004). (10.1103/PhysRevLett.93.146401) / Phys. Rev. Lett. (2004)
  77. M.-L. Foo et al., Phys. Rev. Lett.92, 247001 (2004). (10.1103/PhysRevLett.92.247001) / Phys. Rev. Lett. (2004)
  78. This work was supported by NSF grant DMR-0443144 and the Laboratory Directed Research and Development program of ORNL which is managed by UT-Battelle Limited Liability Corporation for the U.S. Department of Energy under contract no. DE-AC05-00OR22725. The author is thankful to C. Ahn G. Alvarez L. Balicas A. Bishop I. Bozovic R. Cava S. L. Cooper P. Dai J. C. S. Davis V. Dobrosavljevic T. Egami E. Fradkin N. Goldenfeld Y. Maeno D. Mandrus J. Mannhart J. Mitchell A. Moreo N. Nagaosa S. Nakatsuji M. Rozenberg P. Schiffer Y. Tokura J. Tranquada J-M. Triscone S. Uchida P. Wolynes A. Yazdani and S. C. Zhang for their important comments.
Dates
Type When
Created 20 years, 1 month ago (July 7, 2005, 4:48 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 10:03 p.m.)
Indexed 41 minutes ago (Aug. 21, 2025, 4:49 a.m.)
Issued 20 years, 1 month ago (July 8, 2005)
Published 20 years, 1 month ago (July 8, 2005)
Published Print 20 years, 1 month ago (July 8, 2005)
Funders 0

None

@article{Dagotto_2005, title={Complexity in Strongly Correlated Electronic Systems}, volume={309}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1107559}, DOI={10.1126/science.1107559}, number={5732}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Dagotto, Elbio}, year={2005}, month=jul, pages={257–262} }