Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Electrically induced electron-spin polarization near the edges of a semiconductor channel was detected and imaged with the use of Kerr rotation microscopy. The polarization is out-of-plane and has opposite sign for the two edges, consistent with the predictions of the spin Hall effect. Measurements of unstrained gallium arsenide and strained indium gallium arsenide samples reveal that strain modifies spin accumulation at zero magnetic field. A weak dependence on crystal orientation for the strained samples suggests that the mechanism is the extrinsic spin Hall effect.

Bibliography

Kato, Y. K., Myers, R. C., Gossard, A. C., & Awschalom, D. D. (2004). Observation of the Spin Hall Effect in Semiconductors. Science, 306(5703), 1910–1913.

Authors 4
  1. Y. K. Kato (first)
  2. R. C. Myers (additional)
  3. A. C. Gossard (additional)
  4. D. D. Awschalom (additional)
References 29 Referenced 2,296
  1. C. L. Chien C. R. Westgate Eds. The Hall Effect and Its Applications (Plenum New York 1980). (10.1007/978-1-4757-1367-1)
  2. R. S. Popovic Hall Effect Devices (Institute of Physics Bristol UK ed. 2 2004). (10.1887/0750308559)
  3. 10.1103/RevModPhys.67.357
  4. 10.1103/RevModPhys.71.S298
  5. 10.1126/science.1094383
  6. 10.1103/PhysRevB.11.3918
  7. M. I. D'yakonov, V. I. Perel, JETP Lett.13, 467 (1971). / JETP Lett. (1971)
  8. 10.1016/0375-9601(71)90196-4
  9. 10.1103/PhysRevLett.83.1834
  10. 10.1103/PhysRevLett.85.393
  11. 10.1126/science.1087128
  12. 10.1103/PhysRevLett.92.126603
  13. 10.1103/PhysRevB.68.241315
  14. 10.1103/PhysRevB.69.165315
  15. 10.1103/PhysRevB.70.041303
  16. B. A. Bernevig S. C. Zhang www.arXiv.org/abs/condmat/0408442 (2004).
  17. 10.1103/PhysRevLett.80.4313
  18. 10.1103/PhysRevB.68.041307
  19. 10.1103/PhysRevB.56.7574
  20. F. Meier B. P. Zakharchenya Eds. Optical Orientation (Elsevier Amsterdam 1984).
  21. The electron g factor is –0.44 for the unstrained GaAs sample and –0.63 for the strained InGaAs sample as determined by time-resolved Faraday rotation measurements ( 19 ).
  22. 10.1103/PhysRevLett.93.176601
  23. 10.1103/PhysRev.100.580
  24. 10.1038/nature02202
  25. 10.1088/0268-1242/11/5/004
  26. 10.1063/1.341232
  27. The strained InGaAs sample is the sample E used in previous work ( 22 24 ). We use the value of current-induced spin polarization efficiency η as defined in ( 22 ) to obtain the calibration and assume that the ratio of KR to spin polarization is within 10% on the samples from the same wafer that are measured in these experiments. The systematic error introduced in this calibration is +48%/–38%.
  28. 10.1103/PhysRevLett.78.1335
  29. Supported by the Defense Advanced Research Projects Agency the Defense Microelectronics Activity and NSF.
Dates
Type When
Created 20 years, 9 months ago (Nov. 11, 2004, 8:24 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 11:18 p.m.)
Indexed 1 day, 4 hours ago (Aug. 26, 2025, 3:14 a.m.)
Issued 20 years, 8 months ago (Dec. 10, 2004)
Published 20 years, 8 months ago (Dec. 10, 2004)
Published Print 20 years, 8 months ago (Dec. 10, 2004)
Funders 0

None

@article{Kato_2004, title={Observation of the Spin Hall Effect in Semiconductors}, volume={306}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1105514}, DOI={10.1126/science.1105514}, number={5703}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Kato, Y. K. and Myers, R. C. and Gossard, A. C. and Awschalom, D. D.}, year={2004}, month=dec, pages={1910–1913} }