Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

A full-dimensional quantum dynamics simulation of a hydrogen atom reacting with methane on an accurate ab initio potential energy surface is reported. Based on first-principles theory, thermal rate constants are predicted with an accuracy comparable to (or even exceeding) experimental precision. The theoretical prediction is within the range of the significantly varied experimental rate constants reported by different groups. This level of accuracy has previously been achieved only for smaller, three-or four-atom reactive systems. Comparison with classical transition state theory confirms the importance of quantum mechanical tunneling for the rate constant below 400 kelvin.

Bibliography

Wu, T., Werner, H.-J., & Manthe, U. (2004). First-Principles Theory for the H + CH 4 → H 2 + CH 3 Reaction. Science, 306(5705), 2227–2229.

Authors 3
  1. Tao Wu (first)
  2. Hans-Joachim Werner (additional)
  3. Uwe Manthe (additional)
References 39 Referenced 239
  1. 10.1126/science.290.5493.961
  2. 10.1126/science.279.5358.1879
  3. F. Huarte-Larranaga, U. Manthe, J. Chem. Phys.113, 5115 (2000). (10.1063/1.1311802) / J. Chem. Phys. (2000)
  4. F. Huarte-Larranaga, U. Manthe, J. Chem. Phys.117, 4635 (2002). (10.1063/1.1503309) / J. Chem. Phys. (2002)
  5. U. Manthe, J. Theor. Comp. Chem.1, 153 (2002). (10.1142/S0219633602000087) / J. Theor. Comp. Chem. (2002)
  6. W. B. DeMoreet al. Evaluation No. 12 JPL Publication 97-4 (Jet Propulsion Laboratory Pasadena CA 1997) chapter on chemical kinetic and photochemical data for use in stratospheric modelling.
  7. S. P. Snaderet al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation No. 14 (Jet Propulsion Laboratory Pasadena CA 2003).
  8. U. Manthe, T. Seideman, W. H. Miller, J. Chem. Phys.99, 10078 (1993). (10.1063/1.465514) / J. Chem. Phys. (1993)
  9. D. Neuhauser, J. Chem. Phys.100, 9272 (1994). (10.1063/1.466681) / J. Chem. Phys. (1994)
  10. 10.1063/1.467808
  11. T. Takayanagi, J. Chem. Phys.104, 2237 (1996). (10.1063/1.470920) / J. Chem. Phys. (1996)
  12. H.-G. Yu, G. Nyman, J. Chem. Phys.111, 3508 (1999). (10.1063/1.479634) / J. Chem. Phys. (1999)
  13. M. Wang, Y. Li, J. Zhang, D. Zhang, J. Chem. Phys.113, 1802 (2000). (10.1063/1.482013) / J. Chem. Phys. (2000)
  14. D. Wang, J. Bowman, J. Chem. Phys.115, 2055 (2001). (10.1063/1.1383048) / J. Chem. Phys. (2001)
  15. J. Palma, J. Echave, D. C. Clary, J. Phys. Chem. A106, 8256 (2002). (10.1021/jp014014i) / J. Phys. Chem. A (2002)
  16. 10.1063/1.1524181
  17. J. Pu, J. Corchado, D. Truhlar, J. Chem. Phys.115, 6266 (2001). (10.1063/1.1398581) / J. Chem. Phys. (2001)
  18. J. Pu, D. Truhlar, J. Chem. Phys.117, 1479 (2002). (10.1063/1.1485063) / J. Chem. Phys. (2002)
  19. B. Kerkeni, D. C. Clary, J. Chem. Phys.120, 2308 (2004). (10.1063/1.1635816) / J. Chem. Phys. (2004)
  20. Y. Zhao, T. Yamamoto, W. H. Miller, J. Chem. Phys.120, 3100 (2004). (10.1063/1.1641006) / J. Chem. Phys. (2004)
  21. 10.1016/0009-2614(90)87014-I
  22. U. Manthe, H.-D. Meyer, L. S. Cederbaum, J. Chem. Phys.97, 3199 (1992). (10.1063/1.463007) / J. Chem. Phys. (1992)
  23. W. H. Miller, J. Chem. Phys.61, 1823 (1974). (10.1063/1.1682181) / J. Chem. Phys. (1974)
  24. W. H. Miller, S. D. Schwartz, J. W. Tromp, J. Chem. Phys.79, 4889 (1983). (10.1063/1.445581) / J. Chem. Phys. (1983)
  25. M. Jordan, R. Gilbert, J. Chem. Phys.102, 5669 (1995). (10.1063/1.469298) / J. Chem. Phys. (1995)
  26. J. M. Bowman, D. Wang, X. Huang, F. Huarte-Larranaga, U. Manthe, J. Chem. Phys.114, 9683 (2001). (10.1063/1.1370944) / J. Chem. Phys. (2001)
  27. M. J. T. Jordan, K. C. Thompson, M. A. Collins, J. Chem. Phys.102, 5647 (1995). (10.1063/1.469296) / J. Chem. Phys. (1995)
  28. K. C. Thompson, M. J. T. Jordan, M. A. Collins, J. Chem. Phys.108, 8302 (1998). (10.1063/1.476259) / J. Chem. Phys. (1998)
  29. 10.1063/1.465990
  30. P. J. Knowles, C. Hampel, H.-J. Werner, J. Chem. Phys.112, 3106 (2000). (10.1063/1.480886) / J. Chem. Phys. (2000)
  31. M. J. O. Deegan, P. J. Knowles, Chem. Phys. Lett.227, 321 (1994). (10.1016/0009-2614(94)00815-9) / Chem. Phys. Lett. (1994)
  32. 10.1063/1.462569
  33. 10.1063/1.456153
  34. T. Wu, U. Manthe, J. Chem. Phys.119, 14 (2003). (10.1063/1.1577328) / J. Chem. Phys. (2003)
  35. J. M. Bowman, J. Chem. Phys.95, 4960 (1991). (10.1021/j100166a014) / J. Chem. Phys. (1991)
  36. P.-M. Marquire, A. G. Dastidar, K. C. Manthorne, P. D. Pacey, Can. J. Chem.72, 600 (1994). (10.1139/v94-083) / Can. J. Chem. (1994)
  37. D. Baulch et al., J. Chem. Phys. Ref. Data21, 411 (1992). (10.1063/1.555908) / J. Chem. Phys. Ref. Data (1992)
  38. J. W. Sutherland, M.-C. Su, J. V. Michael, Int. J. Chem. Kinet.33, 669 (2001). (10.1002/kin.1064) / Int. J. Chem. Kinet. (2001)
  39. Financial support was provided by the Deutsche Forschungsgemeinschaft (Projekt Quantenmechanische Beschreibung der Dynamik elementarer Reaktionsprozesse); the European Commission through the RTN program (HPRN-CT-1999-00007); and the Fond der Chemischen Industrie which is gratefully acknowledged. We thank F. Huarte-Larrañaga for valuable discussions.
Dates
Type When
Created 20 years, 8 months ago (Dec. 26, 2004, 11:34 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 10:57 p.m.)
Indexed 4 weeks, 1 day ago (Aug. 6, 2025, 9:51 a.m.)
Issued 20 years, 8 months ago (Dec. 24, 2004)
Published 20 years, 8 months ago (Dec. 24, 2004)
Published Print 20 years, 8 months ago (Dec. 24, 2004)
Funders 0

None

@article{Wu_2004, title={First-Principles Theory for the H + CH 4 → H 2 + CH 3 Reaction}, volume={306}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1104085}, DOI={10.1126/science.1104085}, number={5705}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Wu, Tao and Werner, Hans-Joachim and Manthe, Uwe}, year={2004}, month=dec, pages={2227–2229} }