Abstract
A full-dimensional quantum dynamics simulation of a hydrogen atom reacting with methane on an accurate ab initio potential energy surface is reported. Based on first-principles theory, thermal rate constants are predicted with an accuracy comparable to (or even exceeding) experimental precision. The theoretical prediction is within the range of the significantly varied experimental rate constants reported by different groups. This level of accuracy has previously been achieved only for smaller, three-or four-atom reactive systems. Comparison with classical transition state theory confirms the importance of quantum mechanical tunneling for the rate constant below 400 kelvin.
References
39
Referenced
239
10.1126/science.290.5493.961
10.1126/science.279.5358.1879
-
F. Huarte-Larranaga, U. Manthe, J. Chem. Phys.113, 5115 (2000).
(
10.1063/1.1311802
) / J. Chem. Phys. (2000) -
F. Huarte-Larranaga, U. Manthe, J. Chem. Phys.117, 4635 (2002).
(
10.1063/1.1503309
) / J. Chem. Phys. (2002) -
U. Manthe, J. Theor. Comp. Chem.1, 153 (2002).
(
10.1142/S0219633602000087
) / J. Theor. Comp. Chem. (2002) - W. B. DeMoreet al. Evaluation No. 12 JPL Publication 97-4 (Jet Propulsion Laboratory Pasadena CA 1997) chapter on chemical kinetic and photochemical data for use in stratospheric modelling.
- S. P. Snaderet al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation No. 14 (Jet Propulsion Laboratory Pasadena CA 2003).
-
U. Manthe, T. Seideman, W. H. Miller, J. Chem. Phys.99, 10078 (1993).
(
10.1063/1.465514
) / J. Chem. Phys. (1993) -
D. Neuhauser, J. Chem. Phys.100, 9272 (1994).
(
10.1063/1.466681
) / J. Chem. Phys. (1994) 10.1063/1.467808
-
T. Takayanagi, J. Chem. Phys.104, 2237 (1996).
(
10.1063/1.470920
) / J. Chem. Phys. (1996) -
H.-G. Yu, G. Nyman, J. Chem. Phys.111, 3508 (1999).
(
10.1063/1.479634
) / J. Chem. Phys. (1999) -
M. Wang, Y. Li, J. Zhang, D. Zhang, J. Chem. Phys.113, 1802 (2000).
(
10.1063/1.482013
) / J. Chem. Phys. (2000) -
D. Wang, J. Bowman, J. Chem. Phys.115, 2055 (2001).
(
10.1063/1.1383048
) / J. Chem. Phys. (2001) -
J. Palma, J. Echave, D. C. Clary, J. Phys. Chem. A106, 8256 (2002).
(
10.1021/jp014014i
) / J. Phys. Chem. A (2002) 10.1063/1.1524181
-
J. Pu, J. Corchado, D. Truhlar, J. Chem. Phys.115, 6266 (2001).
(
10.1063/1.1398581
) / J. Chem. Phys. (2001) -
J. Pu, D. Truhlar, J. Chem. Phys.117, 1479 (2002).
(
10.1063/1.1485063
) / J. Chem. Phys. (2002) -
B. Kerkeni, D. C. Clary, J. Chem. Phys.120, 2308 (2004).
(
10.1063/1.1635816
) / J. Chem. Phys. (2004) -
Y. Zhao, T. Yamamoto, W. H. Miller, J. Chem. Phys.120, 3100 (2004).
(
10.1063/1.1641006
) / J. Chem. Phys. (2004) 10.1016/0009-2614(90)87014-I
-
U. Manthe, H.-D. Meyer, L. S. Cederbaum, J. Chem. Phys.97, 3199 (1992).
(
10.1063/1.463007
) / J. Chem. Phys. (1992) -
W. H. Miller, J. Chem. Phys.61, 1823 (1974).
(
10.1063/1.1682181
) / J. Chem. Phys. (1974) -
W. H. Miller, S. D. Schwartz, J. W. Tromp, J. Chem. Phys.79, 4889 (1983).
(
10.1063/1.445581
) / J. Chem. Phys. (1983) -
M. Jordan, R. Gilbert, J. Chem. Phys.102, 5669 (1995).
(
10.1063/1.469298
) / J. Chem. Phys. (1995) -
J. M. Bowman, D. Wang, X. Huang, F. Huarte-Larranaga, U. Manthe, J. Chem. Phys.114, 9683 (2001).
(
10.1063/1.1370944
) / J. Chem. Phys. (2001) -
M. J. T. Jordan, K. C. Thompson, M. A. Collins, J. Chem. Phys.102, 5647 (1995).
(
10.1063/1.469296
) / J. Chem. Phys. (1995) -
K. C. Thompson, M. J. T. Jordan, M. A. Collins, J. Chem. Phys.108, 8302 (1998).
(
10.1063/1.476259
) / J. Chem. Phys. (1998) 10.1063/1.465990
-
P. J. Knowles, C. Hampel, H.-J. Werner, J. Chem. Phys.112, 3106 (2000).
(
10.1063/1.480886
) / J. Chem. Phys. (2000) -
M. J. O. Deegan, P. J. Knowles, Chem. Phys. Lett.227, 321 (1994).
(
10.1016/0009-2614(94)00815-9
) / Chem. Phys. Lett. (1994) 10.1063/1.462569
10.1063/1.456153
-
T. Wu, U. Manthe, J. Chem. Phys.119, 14 (2003).
(
10.1063/1.1577328
) / J. Chem. Phys. (2003) -
J. M. Bowman, J. Chem. Phys.95, 4960 (1991).
(
10.1021/j100166a014
) / J. Chem. Phys. (1991) -
P.-M. Marquire, A. G. Dastidar, K. C. Manthorne, P. D. Pacey, Can. J. Chem.72, 600 (1994).
(
10.1139/v94-083
) / Can. J. Chem. (1994) -
D. Baulch et al., J. Chem. Phys. Ref. Data21, 411 (1992).
(
10.1063/1.555908
) / J. Chem. Phys. Ref. Data (1992) -
J. W. Sutherland, M.-C. Su, J. V. Michael, Int. J. Chem. Kinet.33, 669 (2001).
(
10.1002/kin.1064
) / Int. J. Chem. Kinet. (2001) - Financial support was provided by the Deutsche Forschungsgemeinschaft (Projekt Quantenmechanische Beschreibung der Dynamik elementarer Reaktionsprozesse); the European Commission through the RTN program (HPRN-CT-1999-00007); and the Fond der Chemischen Industrie which is gratefully acknowledged. We thank F. Huarte-Larrañaga for valuable discussions.
Dates
Type | When |
---|---|
Created | 20 years, 8 months ago (Dec. 26, 2004, 11:34 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 9, 2024, 10:57 p.m.) |
Indexed | 4 weeks, 1 day ago (Aug. 6, 2025, 9:51 a.m.) |
Issued | 20 years, 8 months ago (Dec. 24, 2004) |
Published | 20 years, 8 months ago (Dec. 24, 2004) |
Published Print | 20 years, 8 months ago (Dec. 24, 2004) |
@article{Wu_2004, title={First-Principles Theory for the H + CH 4 → H 2 + CH 3 Reaction}, volume={306}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1104085}, DOI={10.1126/science.1104085}, number={5705}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Wu, Tao and Werner, Hans-Joachim and Manthe, Uwe}, year={2004}, month=dec, pages={2227–2229} }