Abstract
Reaction rates extracted from measurements of donor luminescence quenching by randomly dispersed electron acceptors reveal an exponential decay constant of 1.23 per angstrom for electron tunneling through a frozen toluene glass (with a barrier to tunneling of 1.4 electron volts). The decay constant is 1.62 per angstrom (the barrier, 2.6 electron volts) in a frozen 2-methyl-tetrahydrofuran glass. Comparison to decay constants for tunneling across covalently linked xylyl (0.76 per angstrom) and alkyl (1.0 per angstrom) bridges leads to the conclusion that tunneling between solvent molecules separated by ∼2 angstroms (van der Waals contact) is 20 to 50 times slower than tunneling through a comparable length of a covalently bonded bridge. Our results provide experimental confirmation that covalently bonded pathways can facilitate electron flow through folded polypeptide structures.
References
47
Referenced
142
-
L. Esaki, Science183, 1149 (1974).
(
10.1126/science.183.4130.1149
) / Science (1974) -
J. R. Miller, J. Phys. Chem.79, 1070 (1975).
(
10.1021/j100578a007
) / J. Phys. Chem. (1975) -
D. De Vault, J. H. Parkes, B. Chance, Nature215, 642 (1967).
(
10.1038/215642a0
) / Nature (1967) 10.1017/S0033583503003913
-
H. M. McConnell, J. Chem. Phys.35, 508 (1961).
(
10.1063/1.1731961
) / J. Chem. Phys. (1961) - J. Halpern, L. E. Orgel, Disc. Faraday Soc.1960, 32 (1960). / Disc. Faraday Soc. (1960)
- S. S. Skourtis, D. N. Beratan, Adv. Chem. Phys.106, 377 (1999). / Adv. Chem. Phys. (1999)
-
H. Oevering et al., J. Am. Chem. Soc.109, 3258 (1987).
(
10.1021/ja00245a014
) / J. Am. Chem. Soc. (1987) -
M. D. Johnson, J. R. Miller, N. S. Green, G. L. Closs, J. Phys. Chem.93, 1173 (1989).
(
10.1021/j100341a001
) / J. Phys. Chem. (1989) -
J. F. Smalley et al., J. Am. Chem. Soc.125, 2004 (2003).
(
10.1021/ja028458j
) / J. Am. Chem. Soc. (2003) -
A. Helms, D. Heiler, G. McLendon, J. Am. Chem. Soc.114, 6227 (1992).
(
10.1021/ja00041a047
) / J. Am. Chem. Soc. (1992) - R. Villahermosa thesis California Institute of Technology (2002).
-
W. B. Davis, W. A. Svec, M. A. Ratner, M. R. Wasielewski, Nature396, 60 (1998).
(
10.1038/23912
) / Nature (1998) -
F. D. Lewis et al., Proc. Natl. Acad. Sci. U.S.A.99, 12536 (2002).
(
10.1073/pnas.192432899
) / Proc. Natl. Acad. Sci. U.S.A. (2002) 10.1126/science.256.5059.1007
10.1126/science.7792598
10.1146/annurev.bi.65.070196.002541
-
J. N. Onuchic, D. N. Beratan, J. R. Winkler, H. B. Gray, Annu. Rev. Biophys. Biomol. Struct.21, 349 (1992).
(
10.1146/annurev.bb.21.060192.002025
) / Annu. Rev. Biophys. Biomol. Struct. (1992) -
K. Kumar, I. V. Kurnikov, D. N. Beratan, D. H. Waldeck, M. B. Zimmt, J. Phys. Chem. A102, 5529 (1998).
(
10.1021/jp980113t
) / J. Phys. Chem. A (1998) -
K. Weidemaier, H. L. Tavernier, S. F. Swallen, M. D. Fayer, J. Phys. Chem. A101, 1887 (1997).
(
10.1021/jp962973k
) / J. Phys. Chem. A (1997) -
L. Burel, M. Mostafavi, S. Murata, M. Tachiya, J. Phys. Chem. A103, 5882 (1999).
(
10.1021/jp991087h
) / J. Phys. Chem. A (1999) -
J. R. Miller, J. A. Peeples, M. J. Schmitt, G. L. Closs, J. Am. Chem. Soc.104, 6488 (1982).
(
10.1021/ja00388a002
) / J. Am. Chem. Soc. (1982) -
R. C. Dorfman, Y. Lin, M. D. Fayer, J. Phys. Chem.93, 6388 (1989).
(
10.1021/j100354a023
) / J. Phys. Chem. (1989) -
T. Guarr, M. E. McGuire, G. McLendon, J. Am. Chem. Soc.107, 5104 (1985).
(
10.1021/ja00304a015
) / J. Am. Chem. Soc. (1985) -
J. R. Miller, J. V. Beitz, R. K. Huddleston, J. Am. Chem. Soc.106, 5057 (1984).
(
10.1021/ja00330a004
) / J. Am. Chem. Soc. (1984) -
S. Strauch, G. McLendon, M. McGuire, T. Guarr, J. Phys. Chem.87, 3579 (1983).
(
10.1021/j100242a001
) / J. Phys. Chem. (1983) - Preparation of the Ir(I) complex followed a published procedure ( 28 ). 2 6-Dichloro-1 4-benzoquinone (Sigma-Aldrich) was recrystallized from methanol before use. All solvents were high-purity grade; they were dried and distilled before use.
-
J. L. Atwood et al., Inorg. Chem.23, 4050 (1984).
(
10.1021/ic00192a042
) / Inorg. Chem. (1984) - Estimated from published redox potentials of [Ir(μ-pz)(COD)] 2 ( 30 ) and 2 6-dichloro-1 4-benzoquinone ( 31 ).
-
D. C. Smith, H. B. Gray, Coord. Chem. Rev.100, 169 (1990).
(
10.1016/0010-8545(90)85009-H
) / Coord. Chem. Rev. (1990) -
S. Fukuzumi, S. Koumitsu, K. Hironaka, T. Tanaka, J. Am. Chem. Soc.109, 305 (1987).
(
10.1021/ja00236a003
) / J. Am. Chem. Soc. (1987) -
B. S. Brunschwig, N. Sutin, Comments Inorg. Chem.6, 209 (1987).
(
10.1080/02603598708072291
) / Comments Inorg. Chem. (1987) - Multipole-multipole energy transfer quenching ( 34 ) of the 3 B 2 excited state of the iridium dimer will be negligible because there is no spectral overlap between [Ir(μ-pz)(COD)] 2 3 B 2 luminescence (>600 nm) and 2 6-dichloro-1 4-benzoquinone absorption (<520 nm).
- T. Förster, Ann. Phys. (Leipzig)2, 55 (1948). / Ann. Phys. (Leipzig) (1948)
-
M. Inokuti, F. Hirayama, J. Chem. Phys.43, 1978 (1965).
(
10.1063/1.1697063
) / J. Chem. Phys. (1965) -
A. Blumen, J. Manz, J. Chem. Phys.71, 4694 (1979).
(
10.1063/1.438253
) / J. Chem. Phys. (1979) -
A. Blumen, J. Chem. Phys.72, 2632 (1980).
(
10.1063/1.439408
) / J. Chem. Phys. (1980) 10.1021/ja000017h
-
A. M. Napper, H. Liu, D. H. Waldeck, J. Phys. Chem. B105, 7699 (2001).
(
10.1021/jp0105140
) / J. Phys. Chem. B (2001) - The effective tunneling distance is a D-A center-to-center measure; consequently the larger *D Ir - A Q pair exhibits longer tunneling distances than *D Ru - A Fe .
- ET across xylyl bridges was measured with a flash-quench technique ( 42 ). Ru(bpy) 3 3+ -(xylyl) n -DMA (where n = 3 to 5) was generated in acetonitrile by quenching laser-excited Ru(bpy) 3 2+ -(xylyl) n -DMA with methylviologen. Subsequent DMA to Ru(bpy) 3 3+ ET was monitored by transient absorption spectroscopy ( 12 ). ET rates varied with the number of xyyl groups in the bridge: 9.0 × 0.3 × 10 6 s –1 n = 3; 2 τ 1 × 10 5 s –1 n = 4; 6 τ 1 × 10 3 s –1 n = 5.
-
I.-J. Chang, H. B. Gray, J. R. Winkler, J. Am. Chem. Soc.113, 7056 (1991).
(
10.1021/ja00018a064
) / J. Am. Chem. Soc. (1991) -
W. Drabowicz, Z. Naturforsch.45, 1342 (1990).
(
10.1515/zna-1990-11-1218
) / Z. Naturforsch. (1990) -
W. L. Jorgensen, E. R. Laird, T. B. Nguyen, J. Tirado-Rives, J. Comp. Chem.14, 206 (1993).
(
10.1002/jcc.540140208
) / J. Comp. Chem. (1993) 10.1126/science.290.5489.114
10.1073/pnas.081072898
- We thank J. Kim J. Lee and J. Magyar for several helpful discussions. Supported by BP the NSF (grant no. CHE-0078809) and the Arnold and Mabel Beckman Foundation. O.S.W. acknowledges a postdoctoral fellowship from the Swiss National Science Foundation and B.S.L. a graduate fellowship from the Parsons Foundation.
Dates
Type | When |
---|---|
Created | 20 years, 7 months ago (Jan. 6, 2005, 7:15 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 9, 2024, 10:43 p.m.) |
Indexed | 1 year, 3 months ago (May 13, 2024, 4:33 a.m.) |
Issued | 20 years, 7 months ago (Jan. 7, 2005) |
Published | 20 years, 7 months ago (Jan. 7, 2005) |
Published Print | 20 years, 7 months ago (Jan. 7, 2005) |
@article{Wenger_2005, title={Electron Tunneling Through Organic Molecules in Frozen Glasses}, volume={307}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1103818}, DOI={10.1126/science.1103818}, number={5706}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Wenger, Oliver S. and Leigh, Brian S. and Villahermosa, Randy M. and Gray, Harry B. and Winkler, Jay R.}, year={2005}, month=jan, pages={99–102} }