Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

We report on the coupling between ferroelectric and magnetic order parameters in a nanostructured BaTiO 3 -CoFe 2 O 4 ferroelectromagnet. This facilitates the interconversion of energies stored in electric and magnetic fields and plays an important role in many devices, including transducers, field sensors, etc. Such nanostructures were deposited on single-crystal SrTiO 3 (001) substrates by pulsed laser deposition from a single Ba-Ti-Co-Fe-oxide target. The films are epitaxial in-plane as well as out-of-plane with self-assembled hexagonal arrays of CoFe 2 O 4 nanopillars embedded in a BaTiO 3 matrix. The CoFe 2 O 4 nanopillars have uniform size and average spacing of 20 to 30 nanometers. Temperature-dependent magnetic measurements illustrate the coupling between the two order parameters, which is manifested as a change in magnetization at the ferroelectric Curie temperature. Thermodynamic analyses show that the magnetoelectric coupling in such a nanostructure can be understood on the basis of the strong elastic interactions between the two phases.

Bibliography

Zheng, H., Wang, J., Lofland, S. E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S. R., Ogale, S. B., Bai, F., Viehland, D., Jia, Y., Schlom, D. G., Wuttig, M., Roytburd, A., & Ramesh, R. (2004). Multiferroic BaTiO 3 -CoFe 2 O 4 Nanostructures. Science, 303(5658), 661–663.

Authors 16
  1. H. Zheng (first)
  2. J. Wang (additional)
  3. S. E. Lofland (additional)
  4. Z. Ma (additional)
  5. L. Mohaddes-Ardabili (additional)
  6. T. Zhao (additional)
  7. L. Salamanca-Riba (additional)
  8. S. R. Shinde (additional)
  9. S. B. Ogale (additional)
  10. F. Bai (additional)
  11. D. Viehland (additional)
  12. Y. Jia (additional)
  13. D. G. Schlom (additional)
  14. M. Wuttig (additional)
  15. A. Roytburd (additional)
  16. R. Ramesh (additional)
References 17 Referenced 2,075
  1. N. A. Hill, Annu. Rev. Mater. Res.32, 1 (2002). (10.1146/annurev.matsci.32.101901.152309) / Annu. Rev. Mater. Res. (2002)
  2. F. A. Smolenskiĭ, I. E. Chupis, Sov. Phys. Usp.25, 475 (1982). / Sov. Phys. Usp. (1982)
  3. 10.1126/science.1080615
  4. J. Van Suchtelen, Philips Res. Rep.27, 28 (1972). / Philips Res. Rep. (1972)
  5. R. E. Newnham, S. Trolier-McKinstry, J. Appl. Crystallogr.23, 447 (1990). (10.1107/S0021889890006471) / J. Appl. Crystallogr. (1990)
  6. J. Van Den Boomgaard, A. M. J. G. van Run, J. Van Suchtelen, Ferroelectrics14, 727 (1976). (10.1080/00150197608236711) / Ferroelectrics (1976)
  7. M. I. Bichurin, V. M. Petrov, Yu. V. Kiliba, G. Srinivasan, Phys. Rev. B66, 13404 (2002). (10.1103/PhysRevA.66.013404) / Phys. Rev. B (2002)
  8. J. Ryu, S. Priya, K. Uchino, H. E. Kim, J. Electroceramics8, 107 (2002). (10.1023/A:1020599728432) / J. Electroceramics (2002)
  9. K. Lefki, G. J. M. Dormans, J. Appl. Phys.76, 1764 (1994). (10.1063/1.357693) / J. Appl. Phys. (1994)
  10. V. Moshnyagaet al., Nature Mater.2, 247 (2003). (10.1038/nmat859) / Nature Mater. (2003)
  11. A. L. Roitburd, Phys. Status Solidi A37, 329 (1976). (10.1002/pssa.2210370141) / Phys. Status Solidi A (1976)
  12. A. L. Roytburd, J. Appl. Phys.83, 228 (1998). (10.1063/1.366677) / J. Appl. Phys. (1998)
  13. A. G. Khachaturyan Theory of Structural Transformations in Solids (Wiley New York 1993).
  14. Materials and methods are available as supporting material on Science Online.
  15. R. M. Bozorth Ferromagnetism (IEEE Press Piscataway NJ 1993). (10.1109/9780470544624)
  16. V. J. Folen, in Landolt-Börnstein, vol. 3, part 4b, Magnetic and Other Properties of Oxides and Related Compounds, K.-H. Hellwege, A.M. Hellwege, Eds. (Springer, Berlin, Heidelberg, New York, 1970), pp. 366–393. / Magnetic and Other Properties of Oxides and Related Compounds (1970)
  17. The work at the University of Maryland is supported by the NSF–Materials Research Science and Engineering Centers under contract DMR-00-80008 and Office of Naval Research–Multidisciplinary University Research Initiative under contract N000140110761. The work at Rowan University is supported by the New Jersey Commission on Higher Education.
Dates
Type When
Created 21 years, 6 months ago (Jan. 29, 2004, 5:58 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 10:52 p.m.)
Indexed 1 day, 22 hours ago (Aug. 19, 2025, 6:05 a.m.)
Issued 21 years, 6 months ago (Jan. 30, 2004)
Published 21 years, 6 months ago (Jan. 30, 2004)
Published Print 21 years, 6 months ago (Jan. 30, 2004)
Funders 0

None

@article{Zheng_2004, title={Multiferroic BaTiO 3 -CoFe 2 O 4 Nanostructures}, volume={303}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1094207}, DOI={10.1126/science.1094207}, number={5658}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Zheng, H. and Wang, J. and Lofland, S. E. and Ma, Z. and Mohaddes-Ardabili, L. and Zhao, T. and Salamanca-Riba, L. and Shinde, S. R. and Ogale, S. B. and Bai, F. and Viehland, D. and Jia, Y. and Schlom, D. G. and Wuttig, M. and Roytburd, A. and Ramesh, R.}, year={2004}, month=jan, pages={661–663} }