Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

We have measured carbon nanotube quantum dots with multiple electrostatic gates and used the resulting enhanced control to investigate a nanotube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams as a function of two nearly independent gate voltages. The device can be tuned from weak to strong interdot tunnel-coupling regimes, and the transparency of the leads can be controlled independently. We extract values of energy-level spacings, capacitances, and interaction energies for this system. This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum computation.

Bibliography

Mason, N., Biercuk, M. J., & Marcus, C. M. (2004). Local Gate Control of a Carbon Nanotube Double Quantum Dot. Science, 303(5658), 655–658.

Authors 3
  1. N. Mason (first)
  2. M. J. Biercuk (additional)
  3. C. M. Marcus (additional)
References 31 Referenced 176
  1. C. Dekker, Phys. Today52 , 22 (1999). / Phys. Today (1999)
  2. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, J. Phys. Chem. B104, 2794 (2000). (10.1021/jp993592k) / J. Phys. Chem. B (2000)
  3. 10.1038/386474a0
  4. 10.1126/science.275.5308.1922
  5. J. Kong, C. W. Zhou, E. Yenilmez, H. J. Dai, Appl. Phys. Lett.77, 3977 (2000). (10.1063/1.1331088) / Appl. Phys. Lett. (2000)
  6. 10.1103/PhysRevA.57.120
  7. D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, K. B. Whaley, Nature408, 339 (2000). (10.1038/35042541) / Nature (2000)
  8. Multiple quantum dots without independent control have been observed previously in carbon nanotubes. See ( 10 ) and ( 11 ).
  9. K. Ishibashi, M. Suzuki, T. Ida, Y. Aoyagi, Appl. Phys. Lett.79, 1864 (2001). (10.1063/1.1403295) / Appl. Phys. Lett. (2001)
  10. J. Lefebvre, J. F. Lynch, M. Llaguno, M. Radosavljevic, A. T. Johnson, Appl. Phys. Lett.75, 3014 (1999). (10.1063/1.125218) / Appl. Phys. Lett. (1999)
  11. M. J. Biercuk N. Mason C. M. Marcus Nano Lett. in press published online 19 November 2003.
  12. 10.1063/1.1480877
  13. Materials and methods are available as supporting material on Science Online.
  14. Measurements of conductance as a function of bias voltage and gate voltage show Coulomb blockade with two nearly equivalent charging energies indicating that the two dots are of equal size. The symmetry of the honeycombs in Fig. 2 also indicates that the charging energies of the two dots are nearly equal.
  15. 10.1126/science.291.5502.283
  16. L. Chico, L. X. Benedict, S. G. Louie, M. L. Cohen, Phys. Rev. B54, 2600 (1996). (10.1103/PhysRevB.54.2600) / Phys. Rev. B (1996)
  17. T. Kostyrko, M. Bartkowiak, G. D. Mahan, Phys. Rev. B59, 3241 (1999). / Phys. Rev. B (1999)
  18. H. J. Choi, J. Ihm, S. G. Louis, M. L. Cohen, Phys. Rev. Lett.84, 2917 (2000). (10.1103/PhysRevLett.84.2917) / Phys. Rev. Lett. (2000)
  19. M. J. Biercuk N. Mason J. Chow C. M. Marcus available at http://arXiv.org/abs/cond-mat/0312276.
  20. W. G. van der Wielet al., Rev. Mod. Phys.75, 1 (2003). / Rev. Mod. Phys. (2003)
  21. N. C. van der Vaartet al., Phys. Rev. Lett.74, 4702 (1995). (10.1103/PhysRevLett.74.4702) / Phys. Rev. Lett. (1995)
  22. 10.1126/science.282.5390.932
  23. D. V. Averin Yu V. Nazarov in Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures H. Grabert M. H. Devoret Eds. (Plenum Press and NATO Scientific Affairs Division New York/London 1992).
  24. 10.1126/science.289.5485.1730
  25. J. Vavroet al., Phys. Rev. Lett.90, 65503 (2003). (10.1103/PhysRevLett.90.065503) / Phys. Rev. Lett. (2003)
  26. C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campman, A. C. Gossard, Science274, 1332 (1996). (10.1126/science.274.5291.1332) / Science (1996)
  27. L. P. Kouwenhovenet al. in Mesoscopic Electron Transport L. P. Kouwenhoven G. Schön L. L. Sohn Eds. (Kluwer Dordrecht Netherlands 1997). (10.1007/978-94-015-8839-3_1)
  28. A. Kaminksi, L. I. Glazman, Phys. Rev. B59, 9798 (1999). (10.1103/PhysRevB.59.9798) / Phys. Rev. B (1999)
  29. K. A. Matveev, L. I. Glazman, H. U. Baranger, Phys. Rev. B54, 5637 (1996). (10.1103/PhysRevB.54.5637) / Phys. Rev. B (1996)
  30. 1/T behavior is expected for Γ <k B T ≪ Δ.
  31. The authors wish to thank J. Hone A. C. Johnson and J. B. Miller for useful discussions and H. Park for assistance with the design of the nanotube chemical vapor deposition system. This work was supported by funding from the NSF through the Harvard Materials Research Science and Engineering Center the NSF under EIA-0210737 and the Army Research Office/Advanced Research and Development Authority Quantum Computing Program. N.M. acknowledges support from the Harvard Society of Fellows. M.J.B. acknowledges support from an NSF Graduate Research Fellowship and from an ARO Quantum Computing Graduate Research Fellowship.
Dates
Type When
Created 21 years, 7 months ago (Jan. 29, 2004, 5:58 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 10:52 p.m.)
Indexed 1 month, 1 week ago (July 24, 2025, 8:28 a.m.)
Issued 21 years, 7 months ago (Jan. 30, 2004)
Published 21 years, 7 months ago (Jan. 30, 2004)
Published Print 21 years, 7 months ago (Jan. 30, 2004)
Funders 0

None

@article{Mason_2004, title={Local Gate Control of a Carbon Nanotube Double Quantum Dot}, volume={303}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1093605}, DOI={10.1126/science.1093605}, number={5658}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Mason, N. and Biercuk, M. J. and Marcus, C. M.}, year={2004}, month=jan, pages={655–658} }