Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

When a liquid is cooled below its melting temperature, it usually crystallizes. However, if the quenching rate is fast enough, the system may remain in a disordered state, progressively losing its fluidity upon further cooling. When the time needed for the rearrangement of the local atomic structure reaches approximately 100 seconds, the system becomes “solid” for any practical purpose, and this defines the glass transition temperature T g . Approaching this transition from the liquid side, different systems show qualitatively different temperature dependencies of the viscosity, and accordingly they have been classified by introducing the concept of “fragility.” We report experimental observations that relate the microscopic properties of the glassy phase to the fragility. We find that the vibrational properties of the glass well below T g are correlated with the fragility value. Consequently, we extend the fragility concept to the glassy state and indicate how to determine the fragility uniquely from glass properties well below T g .

Bibliography

Scopigno, T., Ruocco, G., Sette, F., & Monaco, G. (2003). Is the Fragility of a Liquid Embedded in the Properties of Its Glass? Science, 302(5646), 849–852.

Authors 4
  1. Tullio Scopigno (first)
  2. Giancarlo Ruocco (additional)
  3. Francesco Sette (additional)
  4. Giulio Monaco (additional)
References 36 Referenced 276
  1. K. Ngai Ed. J. Non-Cryst. Solids307–319 (special issue) (2002).
  2. M. Giordano D. Leporini M. Tosi Eds. J. Phys. Condens. Matter11 (special issue) (1999).
  3. L. Andreozzi M. Giordano D. Leporini M. Tosi Eds. J. Phys. Condens. Matter15 (special issue) (2003). (10.1088/0953-8984/15/11/001)
  4. 10.1038/35065704
  5. C. A. Angell, J. Non-Cryst. Solids131-133, 13 (1991). / J. Non-Cryst. Solids (1991)
  6. 10.1126/science.267.5206.1924
  7. L.-M. Martinez, C. A. Angell, Nature410, 663 (2001). (10.1038/35070517) / Nature (2001)
  8. D. Huang, G. McKenna, J. Chem. Phys.13, 5621 (2001). / J. Chem. Phys. (2001)
  9. K. Ngai, O. Yamamuro, J. Chem. Phys.23, 10403 (1999). / J. Chem. Phys. (1999)
  10. A. Sokolov, E. Rössler, A. Kisliuk, D. Quittman, Phys. Rev. Lett.71, 2062 (1993). (10.1103/PhysRevLett.71.2062) / Phys. Rev. Lett. (1993)
  11. S. Yannopoulos, G. Papatheodorou, Phys. Rev. E62, 3728 (2000). (10.1103/PhysRevB.62.3728) / Phys. Rev. E (2000)
  12. R. Böhmer, K. L. Ngai, C. A. Angell, D. J. Plazek, J. Chem. Phys.99, 4201 (1993). (10.1063/1.466117) / J. Chem. Phys. (1993)
  13. M. Goldstein, J. Chem. Phys.51, 3728 (1969). (10.1063/1.1672587) / J. Chem. Phys. (1969)
  14. 10.1103/PhysRevA.25.978
  15. R. Hall, P. Wolynes, J. Chem. Phys.86, 2943 (1987). (10.1063/1.452045) / J. Chem. Phys. (1987)
  16. R. J. Speedy, J. Phys. Chem. B103, 4060 (1999). (10.1021/jp983830w) / J. Phys. Chem. B (1999)
  17. S. Sastry, Nature409, 164 (2001). (10.1038/35051524) / Nature (2001)
  18. J. C. Dyre N. Olsen preprint available at http://xxx.lanl.gov/abs/cond-mat/0211042.
  19. C. A. Angell in Proceedings of the International School of Physics Enrico Fermi Course CXXXIV F. Mallamace H. E. Stanley Eds. (IOS Press Amsterdam Netherlands 1997) vol. 11.
  20. 10.1126/science.280.5369.1550
  21. Some fraction of the elastic line may in principle be related to the nonpropagating temperature fluctuations. The amount of this contribution is actually ruled out by the quantity [( c p )/( c v )] – 1 = γ – 1 and therefore it vanishes in the T → 0limit when γ → 1 holds according to the harmonic approximation.
  22. A. Tölle, H. Schober, J. Wuttke, F. Fujara, Phys. Rev. E56, 809 (1997). / Phys. Rev. E (1997)
  23. G. Ruocco, et al., Phys. Rev. Lett.84, 5788 (2000). (10.1103/PhysRevLett.84.5788) / Phys. Rev. Lett. (2000)
  24. T. Scopigno, G. Ruocco, F. Sette, G. Viliani, Phys. Rev. E66, 031205 (2002). (10.1103/PhysRevE.66.031205) / Phys. Rev. E (2002)
  25. 10.1073/pnas.1233719100
  26. M. Hemmati, C. T. Moynihan, C. A. Angell, J. Chem. Phys.115, 6663 (2001). (10.1063/1.1396679) / J. Chem. Phys. (2001)
  27. T. Scopigno et al., J. Chem. Phys.118, 311 (2003). (10.1063/1.1526097) / J. Chem. Phys. (2003)
  28. C. Masciovecchio et al., Phys. Mag. B79, 2013 (1999). (10.1080/13642819908223089) / Phys. Mag. B (1999)
  29. G. Ruocco et al., Phys. Rev. Lett.83, 5583 (1999). (10.1103/PhysRevLett.83.5583) / Phys. Rev. Lett. (1999)
  30. D. Fioretto et al., Phys. Rev. E59, 4470(1999). / Phys. Rev. E (1999)
  31. R. Zorn, G. B. McKenna, L. Willner, D. Richter, Macromolecules28, 8552 (1995). (10.1021/ma00129a014) / Macromolecules (1995)
  32. C. Hansen, F. Stickel, R. Richert, E. W. Fisher, J. Chem. Phys.108, 6408 (1998). (10.1063/1.476063) / J. Chem. Phys. (1998)
  33. C. Masciovecchio et al., Phys. Rev. Lett.80, 544 (1998). (10.1103/PhysRevLett.80.544) / Phys. Rev. Lett. (1998)
  34. B. M. Erwin, R. H. Colby, J. Non-Cryst. Solids307-310, 225 (2002). / J. Non-Cryst. Solids (2002)
  35. G. Monaco, C. Masciovecchio, G. Ruocco, F. Sette, Phys. Rev. Lett.80, 2161 (1998). (10.1103/PhysRevLett.80.2161) / Phys. Rev. Lett. (1998)
  36. The authors gratefully acknowledge C. A. Angell for valuable hints and suggestions and J. Dyre S. Sastry F. Sciortino and S. Yannopoulos for fruitful discussions.
Dates
Type When
Created 21 years, 9 months ago (Oct. 30, 2003, 8:25 p.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 10:22 p.m.)
Indexed 1 day, 17 hours ago (Aug. 26, 2025, 3:06 a.m.)
Issued 21 years, 9 months ago (Oct. 31, 2003)
Published 21 years, 9 months ago (Oct. 31, 2003)
Published Print 21 years, 9 months ago (Oct. 31, 2003)
Funders 0

None

@article{Scopigno_2003, title={Is the Fragility of a Liquid Embedded in the Properties of Its Glass?}, volume={302}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1089446}, DOI={10.1126/science.1089446}, number={5646}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Scopigno, Tullio and Ruocco, Giancarlo and Sette, Francesco and Monaco, Giulio}, year={2003}, month=oct, pages={849–852} }