Abstract
The smoggy stratosphere of Saturn's largest moon, Titan, veils its surface from view, except at narrow wavelengths centered at 0.83, 0.94, 1.07, 1.28, 1.58, 2.0, 2.9, and 5.0 micrometers. We derived a spectrum of Titan's surface within these “windows” and detected features characteristic of water ice. Therefore, despite the hundreds of meters of organic liquids and solids hypothesized to exist on Titan's surface, its icy bedrock lies extensively exposed.
References
53
Referenced
134
-
Y. L. Yung, M. Allen, J. P. Pinto, Astrophys. J. Suppl.55, 465 (1984).
(
10.1086/190963
) / Astrophys. J. Suppl. (1984) 10.1126/science.221.4605.55
10.1126/science.222.4629.1229
10.1016/0019-1035(91)90219-J
10.1006/icar.1995.1179
- Haze optical constants come from Khare et al. ( 39 ).
- Spectra of decade-old tholins ( 40 ) differ at 1.2 to 1.4 μm from spectra of young tholins ( 41 ). It is not clear whether the tholin chemistry proceeded in isolation or through contamination.
- Noll et al. ( 42 ) do not consider scattering and emission causing slightly different results from ours at 5 μm.
10.1038/26920
-
J. T. Rayner et al., Publ. Astron. Soc. Pac.115, 362 (2003).
(
10.1086/367745
) / Publ. Astron. Soc. Pac. (2003) 10.1126/science.290.5491.509
-
O. B. Toon, C. P. McKay, C. A. Griffith, R. P. Turco, Icarus95, 24 (1992).
(
10.1016/0019-1035(92)90188-D
) / Icarus (1992) - C. P. McKay, J. B. Pollack, R. Courtin, Icarus80,2 3 (1989). / Icarus (1989)
-
E. Karkoschka, Icarus133, 134 (1998).
(
10.1006/icar.1998.5913
) / Icarus (1998) 10.1006/icar.1994.1139
- We adopted a discrete ordinates calculation having eight streams as described by Stamnes et al. ( 43 ).
- Titan's thermal profile derives from Lellouch et al. ( 44 ) and Yelle et al. ( 45 ).
- Absorption coefficients of CH 4 and CO derive from the line parameters of Husson et al. ( 46 ).
- We varied the vertical optical depth at two altitude regions (40 to 100 km and 100 to 160 km) to derive the range of haze optical depths that fit Titan's spectrum. Haze below ∼40 km is limited by the visibility of Titan's surface at 0.63 μm.
- Our surface albedos are thus unaffected by variations in the 0.01 shape parameter (or width) of our log-normal particle distribution the tholin optical constants ( 6 ) and details of the haze models.
-
K. Rages, J. B. Pollack, P. H. Smith, J. Geophys. Res.88, 8721 (1983).
(
10.1029/JA088iA11p08721
) / J. Geophys. Res. (1983) 10.1006/icar.1996.0023
- J. Richardson R. D. Lorenz A. McEwen in preparation.
-
M. G. Tomasko, P. H. Smith, Icarus51, 65 (1982).
(
10.1016/0019-1035(82)90030-6
) / Icarus (1982) -
R. A. West et al., J. Geophys. Res.88, 8699 (1983).
(
10.1029/JA088iA11p08699
) / J. Geophys. Res. (1983) -
R. A. West, P. H. Smith, Icarus90, 330 (1991).
(
10.1016/0019-1035(91)90113-8
) / Icarus (1991) -
P. Rannou, M. Cabane, R. Botet, E. Chassefière, J. Geophys. Res.102, 10997 (1997).
(
10.1029/97JE00719
) / J. Geophys. Res. (1997) - P. Rannou et al., Icarus118, 355 (1997). / Icarus (1997)
10.1016/S0032-0633(00)00051-9
- M. G. Tomaskoet al., in Huygens: Science Payload and Mission, Vol. ESA-SP 1177, A. Wilson, Ed. (European Space Agency Publications Division, Noordwijk, Netherlands, 1997), pp. 109–138. / Huygens: Science Payload and Mission (1997)
- One model that fits our optical depths contains haze above 90-km altitude where the radius (in micrometers) column abundance (km amagat) and 0.94-μm optical depth are specified by the values ( a b c ) of (6.8 –424 0) (152.3 –131.7 –34.5) and (104.3 –108.9 –20.2) respectively. These haze parameters x depend on altitude z (in km) as: z = a + b log 10 ( x ) + c [log 10 ( x )] 2 .
- B. Lutz, C. de Bergh, T. Owen, Nature220, 1374 (1983). / Nature (1983)
10.1006/icar.1998.5908
- Methane is assumed to be subsaturated at the surface with a humidity of 60%. A constant mixing ratio is adopted above the surface until the level of saturation is reached. Above this level the atmosphere is saturated up to the tropopause. The mixing ratio is constant at the tropopause value above this point. An amagat is a unit of density equal to 2.69 × 10 19 cm - 3 .
-
M. Combes et al., Icarus129, 482 (1997).
(
10.1006/icar.1997.5772
) / Icarus (1997) 10.1006/icar.2000.6360
- S. G. Gibbard et al., Icarus139, 189 (1991). / Icarus (1991)
- Note that 5-m-deep pools of methane absorb 95% of 1.1- to 5-μm sunlight ( 47 ).
-
B. N. Khare, C. Sagan, E. T. Arakawa, F. Suits, T. A. Callcott, M. W. Williams Icarus60, 127 (1984).
(
10.1016/0019-1035(84)90142-8
) / Icarus (1984) - T. L. Roush J. B. Dalton Conf. 33 abstract 1532 Lunar Planetary Inst. Houston TX (2002).
-
D. Cruikshank et al., Icarus94, 345 (1991).
(
10.1016/0019-1035(91)90233-J
) / Icarus (1991) -
K. S. Noll, T. R. Geballe, R. F. Knacke, Y. J. Pendleton, Icarus124, 625 (1996).
(
10.1006/icar.1996.0236
) / Icarus (1996) 10.1364/AO.27.002502
10.1016/0019-1035(89)90081-X
- R. V. Yelle D. F. Strobell E. Lellouch D. Gautier in Huygens: Science Payload and Mission Vol. ESA-SP 1177
- A. Wilson Ed. (European Space Agency Publications Division Noordwijk Netherlands 1997) pp. 243–256.
- N. Husson B. Bonnet N. A. Scott A. Chédin The “GEISA” data bank 1991 version (Internal note L.M.D. 163 Laboratoire de Météorologie Dynamique Palaiseau France 1991).
10.1006/icar.2001.6726
-
M. T. Lemmon, E. Karkoschka, M. Tomasko, Icarus103, 329 (1993).
(
10.1006/icar.1993.1074
) / Icarus (1993) 10.1038/364511a0
-
T. B. McCord et al., J. Geophys. Res.103, 8603 (1998).
(
10.1029/98JE00788
) / J. Geophys. Res. (1998) - T. B. McCord personal communication.
- We thank D. Cruikshank for helpful discussions regarding the spectroscopic characteristics of complex organic molecules. This research is supported by the NASA Planetary Astronomy Program.
Dates
Type | When |
---|---|
Created | 22 years, 4 months ago (April 25, 2003, 8:15 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 9, 2024, 11:40 p.m.) |
Indexed | 3 weeks ago (Aug. 5, 2025, 9:07 a.m.) |
Issued | 22 years, 4 months ago (April 25, 2003) |
Published | 22 years, 4 months ago (April 25, 2003) |
Published Print | 22 years, 4 months ago (April 25, 2003) |
@article{Griffith_2003, title={Evidence for the Exposure of Water Ice on Titan’s Surface}, volume={300}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1081897}, DOI={10.1126/science.1081897}, number={5619}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Griffith, Caitlin A. and Owen, Tobias and Geballe, Thomas R. and Rayner, John and Rannou, Pascal}, year={2003}, month=apr, pages={628–630} }