Abstract
Calorimetric measurements of metal adsorption energies directly provide the energies of metal atoms in supported metal nanoparticles. As the metal coverage increases, the particles grow, revealing the dependence of this energy on particle size, which is found to be much stronger than predicted with the usual Gibbs-Thompson relation. It is shown that this knowledge is crucial to accurately model long-term sintering rates of metal nanoparticles in catalysts.
References
44
Referenced
962
10.1126/science.281.5383.1647
10.1016/S0920-5861(96)00208-8
-
P. Wynblatt N. A. Gjostein in Progess in Solid State Chemistry J. O. McCaldin G. A. Somorjai Eds. (Elsevier Science Amsterdam 1975) vol. 9 pp. 21–58.
(
10.1016/0079-6786(75)90013-8
) -
Wynblatt P., Gjostein N. A., Acta Metall. 24, 1165 (1976).
(
10.1016/0001-6160(76)90034-1
) / Acta Metall. by Wynblatt P. (1976) -
Ruckenstein E., Dadyburjor D. B., Rev. Chem. Eng. 1, 251 (1983).
(
10.1515/REVCE.1983.1.3.251
) / Rev. Chem. Eng. by Ruckenstein E. (1983) -
G. A. Fuentes E. Salinas-Rodriguez in Catalyst Deactivation C. H. Bartholomew G. A. Fuentes Eds. (Elsevier Science Amsterdam 1997) pp. 573–583.
(
10.1016/S0167-2991(97)80202-9
) -
C. H. Bartholomew in Catalyst Deactivation C. H. Bartholomew G. A. Fuentes Eds. (Elsevier Science Amsterdam 1997) pp. 585–592.
(
10.1016/S0167-2991(97)80203-0
) -
Campbell C. T., Surf. Sci. Rep. 227, 1 (1997).
(
10.1016/S0167-5729(96)00011-8
) / Surf. Sci. Rep. by Campbell C. T. (1997) -
Bachels T., Schafer R., Guntherodt H. J., Phys. Rev. Lett. 84, 4890 (2000).
(
10.1103/PhysRevLett.84.4890
) / Phys. Rev. Lett. by Bachels T. (2000) -
Yang L. Q., DePristo A. E., J. Catal. 149, 223 (1994).
(
10.1006/jcat.1994.1288
) / J. Catal. by Yang L. Q. (1994) -
Baletto F., Ferrando R., Fortunelli A., Montalenti F., Mottet C., J. Chem. Phys. 116, 3856 (2002).
(
10.1063/1.1448484
) / J. Chem. Phys. by Baletto F. (2002) - Because the only degrees of freedom of the metal atoms in these clusters are vibrations the entropic contributions to the free energy are small and differ very little with cluster size. Thus Eq. 1 is also often applied to describe the size dependence of internal energy as well as free energy. Generally γ is assumed to be independent of particle radius at the value for bulk metal ( 3 4 13 – 15 ).
-
Lai X., Goodman D. W., J. Mol. Catal. A162, 33 (2000).
(
10.1016/S1381-1169(00)00320-4
) / J. Mol. Catal. by Lai X. (2000) -
Jak M. J., et al., Surface Sci. 474, 28 (2001).
(
10.1016/S0039-6028(00)00982-1
) / Surface Sci. by Jak M. J. (2001) - M. J. Jak C. Konstapel A. v. Kreuningen
- Verhoeven J., Frenken J. W., Surf. Sci. 457, 259 (2000). / Surf. Sci. by Verhoeven J. (2000)
-
Starr D. E., Bald D. J., Musgrove J. E., Ranney J. T., Campbell C. T., J. Chem. Phys. 114, 3752 (2001).
(
10.1063/1.1337097
) / J. Chem. Phys. by Starr D. E. (2001) - The assumption of a constant number density of islands is probably slightly incorrect in that their number generally increases weakly with coverage in this range for such systems ( 13 41 ). Correcting for this would cause the measured decrease in stability with radius to be even more dramatic than shown.
-
Tyson W. R., Miller W. A., Surf. Sci. 62, 267 (1977).
(
10.1016/0039-6028(77)90442-3
) / Surf. Sci. by Tyson W. R. (1977) - Using a very new value of γ for Pb [44 μJ/cm 2 ( 42 )] gives even poorer agreement with experiment. Using Eq. 1 here neglects the energy of the flat face of the hemisphere which is equivalent to setting the Pb/MgO adhesion energy at this face equal to the Pb-Pb adhesion energy. [If the Pb/MgO adhesion energy were zero the factor of 2 in Eq. 1 would instead be 3. In reality the needed correction is much smaller ( 16 ).]
-
Galanakis I., Papanikolaou N., Dederichs P. H., Surf. Sci. 511, 1 (2002).
(
10.1016/S0039-6028(02)01547-9
) / Surf. Sci. by Galanakis I. (2002) -
Tolman R. C., J. Chem. Phys. 17, 333 (1949).
(
10.1063/1.1747247
) / J. Chem. Phys. by Tolman R. C. (1949) -
Zhang H. Z., Penn R. L., Hamers R. J., Banfield J. F., J. Phys. Chem. B 103, 4656 (1999).
(
10.1021/jp984574q
) / J. Phys. Chem. B by Zhang H. Z. (1999) - D. R. Lide Ed. CRC Handbook of Chemistry and Physics (CRC Press Boston MA ed. 77 1996).
-
Methfessel M., Hennig D., Scheffler M., Appl. Phys. A55, 442 (1992).
(
10.1007/BF00348331
) / Appl. Phys. by Methfessel M. (1992) - DePristo estimated that relation empirically by extrapolating between measured energies of: the gaseous dimer (CN = 1) a (111) surface (CN = 9) and the bulk (CN = 12). Furthermore we used DePristo's relation to estimate the errors in the MBA model of Fig. 1 and found that the errors due to the decrease in bond energy with CN nearly compensate for the errors associated with extrapolating between only the most stable clusters further justifying its use.
-
McVicker G. B., Garten R. L., Baker R. T., J. Catal. 54, 129 (1978).
(
10.1016/0021-9517(78)90036-2
) / J. Catal. by McVicker G. B. (1978) - We simplified the definition of E tot (= Δ H sub – E ad support + E diff support ) here slightly from that of W-J in that we neglected any excess activation energy (beyond the uphill reaction energy) associated with a monomer detaching from a metal particle to move onto the support surface because this is tiny relative to E tot .
- There is another large error in Eq. 3. In its derivation W-J expanded the exponential factors such as e {μ( R ) – μ(∞)}/ kT in Taylor series and neglected all but the first two terms. This is equivalent to assuming that μ( R ) – μ(∞) is small compared to kT. Inspection of the heat data in Fig. 1 proves that this is clearly not the case below 1000 K for particles with a radius of a few nanometers.
-
Starr D. E., Campbell C. T., J. Phys. Chem. B105, 3776 (2001).
(
10.1021/jp003411a
) / J. Phys. Chem. by Starr D. E. (2001) -
Stassinos C. E., Lee H. H., Chem. Eng. Sci. 50, 1337 (1995).
(
10.1016/0009-2509(95)98845-6
) / Chem. Eng. Sci. by Stassinos C. E. (1995) -
C. H. Bartholomew Ed. Sintering Kinetics of Supported Metals: Perspectives from a Generalized Power Law Approach vol. 88 of Studies in Surface Science and Catalysis (Elsevier Science Amsterdam Netherlands 1994).
(
10.1016/S0167-2991(08)62726-3
) 10.1023/A:1019012903936
-
Cosandey F., Madey T. E., Surf. Rev. Lett. 8, 73 (2001).
(
10.1142/S0218625X01000884
) / Surf. Rev. Lett. by Cosandey F. (2001) -
Parker S. C., Grant A. W., Bondzie V. A., Campbell C. T., Surf. Sci. 441, 10 (1999).
(
10.1016/S0039-6028(99)00753-0
) / Surf. Sci. by Parker S. C. (1999) -
Graoui H., Giorgio S., Henry C. R., Philos. Mag. B 81, 1649 (2001).
(
10.1080/13642810108223109
) / Philos. Mag. B by Graoui H. (2001) -
Campbell C. T., Starr D. E., J. Am. Chem. Soc. 124, 9212 (2002).
(
10.1021/ja020146t
) / J. Am. Chem. Soc. by Campbell C. T. (2002) - The average initial radius of Au clusters grown on TiO 2 (110) under similar deposition conditions was estimated by scanning tunneling microscopy ( 13 ) and high-resolution scanning electron microscopy ( 33 ) to be about 1 nm. We used a slightly smaller average size because those techniques could have missed the smallest particles.
-
Gillet M., Mohammed A. A., Masek K., Gillet E., Thin Solid Films 374, 134 (2000).
(
10.1016/S0040-6090(00)01070-1
) / Thin Solid Films by Gillet M. (2000) - S. C. Parker thesis University of Washington Seattle WA (2000).
-
Overbury S. H., Bertrand P. A., Somorjai G. A., Chem. Rev. 75, 547 (1975).
(
10.1021/cr60297a001
) / Chem. Rev. by Overbury S. H. (1975) -
Henry C. R., Meunier M., Mat. Sci. Eng. A217/218, 239 (1996).
(
10.1016/S0921-5093(96)10289-6
) / Mat. Sci. Eng. by Henry C. R. (1996) -
Bombis C., Emundts A., Nowicki M., Bonzel H. P., Surf. Sci. 511, 83 (2002).
(
10.1016/S0039-6028(02)01554-6
) / Surf. Sci. by Bombis C. (2002) - We thank the U.S. Department of Energy Office of Basic Energy Sciences Chemical Sciences Division for support of this work. D.E.S. thanks NSF and the University of Washington Center for Nanotechnology for an IGERT Fellowship.
Dates
Type | When |
---|---|
Created | 22 years, 10 months ago (Oct. 24, 2002, 5:03 p.m.) |
Deposited | 1 year, 7 months ago (Jan. 9, 2024, 10:21 p.m.) |
Indexed | 4 days, 3 hours ago (Aug. 26, 2025, 3:14 a.m.) |
Issued | 22 years, 10 months ago (Oct. 25, 2002) |
Published | 22 years, 10 months ago (Oct. 25, 2002) |
Published Print | 22 years, 10 months ago (Oct. 25, 2002) |
@article{Campbell_2002, title={The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering}, volume={298}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1075094}, DOI={10.1126/science.1075094}, number={5594}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Campbell, Charles T. and Parker, Stephen C. and Starr, David E.}, year={2002}, month=oct, pages={811–814} }