Abstract
Multimillion-atom molecular-dynamics simulations are used to investigate the shock-induced phase transformation of solid iron. Above a critical shock strength, many small close-packed grains nucleate in the shock-compressed body-centered cubic crystal growing on a picosecond time scale to form larger, energetically favored grains. A split two-wave shock structure is observed immediately above this threshold, with an elastic precursor ahead of the lagging transformation wave. For even higher shock strengths, a single, overdriven wave is obtained. The dynamics and orientation of the developing close-packed grains depend on the shock strength and especially on the crystallographic shock direction. Orientational relations between the unshocked and shocked regions are similar to those found for the temperature-driven martensitic transformation in iron and its alloys.
References
44
Referenced
441
- C. M. Wayman H. K. D. H. Bhadeshia in Physical Metallurgy R. W. Cahn P. Haasen Eds. (North-Holland Amsterdam 1996) vol. 2 chap. 15.
- L. Delaey in Phase Transformations in Materials R. W. Cahn P. Haasen E. J. Kramer Eds. (VCH Weinheim Germany 1991) vol. 5 pp. 339–404.
- H. Czichos in The Martensitic Transformation in Science and Technology E. Hornbogen N. Jost Eds. (DGM Informationsgesellschaft Oberursel Germany 1989) chap. 1.
-
Duvall G. E., Graham R. A., Rev. Mod. Phys. 49, 523 (1977).
(
10.1103/RevModPhys.49.523
) / Rev. Mod. Phys. by Duvall G. E. (1977) -
M. A. Meyers Dynamic Behavior of Materials (Wiley-Interscience New York 1994) chap. 8.
(
10.1002/9780470172278
) - J. Kübler V. Eyert in Electronic Structure and Magnetic Properties of Metals and Ceramics Part I K. H. J. Buschow Ed. (VCH Weinheim Germany 1994) vol. 3A chap. 1.
- D. C. Rapaport The Art of Molecular Dynamics Simulation (Cambridge Univ. Press Cambridge 1995).
-
Zhou S. J., Beazley D. M., Lomdahl P. S., Holian B. L., Phys. Rev. Lett. 78, 479 (1997).
(
10.1103/PhysRevLett.78.479
) / Phys. Rev. Lett. by Zhou S. J. (1997) -
Marder M., Comput. Sci. Eng. 1, 48 (1999).
(
10.1109/5992.790587
) / Comput. Sci. Eng. by Marder M. (1999) 10.1126/science.265.5176.1209
10.1038/374607a0
-
Holian B. L., Hammerberg J. E., Lomdahl P. S., J. Comput. Aided Mater. Design 5, 207 (1998).
(
10.1023/A:1008641217554
) / J. Comput. Aided Mater. Design by Holian B. L. (1998) 10.1126/science.279.5356.1525
10.1126/science.283.5404.965
10.1126/science.280.5372.2085
-
Germann T. C., Holian B. L., Lomdahl P. S., Ravelo R., Phys. Rev. Lett. 84, 5351 (2000).
(
10.1103/PhysRevLett.84.5351
) / Phys. Rev. Lett. by Germann T. C. (2000) -
Rubini S., Ballone P., Phys. Rev. B 48, 99 (1993).
(
10.1103/PhysRevB.48.99
) / Phys. Rev. B by Rubini S. (1993) -
Shao Y., Clapp P. C., Rifkin J. A., Met. Mater. Trans. A 27, 1477 (1996).
(
10.1007/BF02649808
) / Met. Mater. Trans. A by Shao Y. (1996) -
Shimojo F., Ebbsjö I., Kalia R. K., Nakano A., Rino J. P., Vashishta P., Phys. Rev. Lett. 84, 3338 (2000).
(
10.1103/PhysRevLett.84.3338
) / Phys. Rev. Lett. by Shimojo F. (2000) -
Entel P., Kadau K., Meyer R., Herper H. C., Schröter M., Hoffmann E., Phase Transitions 65, 79 (1999).
(
10.1080/01411599808209282
) / Phase Transitions by Entel P. (1999) -
K. Kadau P. Entel T. C. Germann P. S. Lomdahl B. L. Holian J. Phys. IV (Paris) 11 Pr8-17 (2001).
(
10.1051/jp4:2001803
) - We used the high-performance parallel molecular-dynamics code SPaSM (33–35) to routinely simulate about 8 million atoms that is samples with dimensions of 40.2 nm × 40.2 nm × 57.4 nm (Fig. 1) on a 12-processor shared-memory Sun Enterprise 4000. A few additional simulations with 25 million atoms were carried out using 64 nodes of the Avalon Alpha/Linux cluster at Los Alamos (36 37).
-
Daw M. S., Foiles S. M., Baskes M. I., Mater. Sci. Rep. 9, 251 (1993).
(
10.1016/0920-2307(93)90001-U
) / Mater. Sci. Rep. by Daw M. S. (1993) - A specific EAM potential for Fe/Ni alloys that describes essential properties such as the lattice constant cohesive energy elastic constants vacancy formation energy and phonon frequencies (29) was previously used to study the fcc ↔ bcc temperature-driven transformation (20). Here we used this many-body potential and a Voter-Chen EAM Fe potential (38) which better represents high-pressure experiments even though it was not fitted to them (30). The qualitative behavior of the shock-induced phase transformation for both EAM potentials is quite similar. Other potentials for Fe have been proposed for higher pressure regimes (39–41) but were deemed not appropriate for this study; for example the first two do not have a bcc ground state at zero pressure and temperature.
- For computational convenience a piston-centered frame of reference is employed so that the sample is initially traveling at a z velocity − u p toward a fixed piston at z = 0.
-
R. G. McQueen S. P. Marsh J. W. Taylor J. N. Fritz W. J. Carter in High-Velocity Impact Phenomena R. Kinslow Ed. (Academic New York 1970) pp. 293–417.
(
10.1016/B978-0-12-408950-1.50012-4
) -
Brown J. M., Fritz J. N., Hixson R. S., J. Appl. Phys. 88, 5496 (2000).
(
10.1063/1.1319320
) / J. Appl. Phys. by Brown J. M. (2000) - Conservation of energy across the shock front leads to a third jump condition that is not needed for the present work. Temperatures if desired can be directly computed from the particle velocities in our MD simulations without any assumptions about the equation of state.
-
Meyer R., Entel P., Phys. Rev. B 57, 5140 (1998).
(
10.1103/PhysRevB.57.5140
) / Phys. Rev. B by Meyer R. (1998) - The importance of properly accounting for anharmonicity e.g. by requiring that the potential obey a reasonable equation of state (42) under uniform compression and dilation has been pointed out (43).
-
Baskes M. I., Phys. Rev. B 46, 2727 (1992).
(
10.1103/PhysRevB.46.2727
) / Phys. Rev. B by Baskes M. I. (1992) -
Loveridge-Smith A., et al., Phys. Rev. Lett. 86, 2349 (2001).
(
10.1103/PhysRevLett.86.2349
) / Phys. Rev. Lett. by Loveridge-Smith A. (2001) -
P. S. Lomdahl P. Tamayo N. Grønbech-Jensen D. M. Beazley in Proceedings of Supercomputing 93 G. S. Ansell Ed. (IEEE Computer Society Press Los Alamitos CA 1993) pp. 520–527.
(
10.1145/169627.169794
) -
Beazley D. M., Lomdahl P. S., Computers in Physics 11, 230 (1997).
(
10.1063/1.4822549
) / Computers in Physics by Beazley D. M. (1997) - For more information about SPaSM see .
- M. S. Warren T. C. Germann P. S. Lomdahl D. M. Beazley J. K. Salmon on Proceedings of the 1998 ACM / IEEE SC98 Conference CD-ROM (IEEE Computer Society 1998).
- Please see to review the work of the Avalon group at Los Alamos.
- R. J. Harrison A. F. Voter S.-P. Chen in Atomistic Simulation of Materials Beyond Pair Potentials V. Vitek D. J. Srolovitz Eds. (Plenum Press New York 1989) p. 219.
-
Matsui M., Anderson O. L., Phys. Earth Planet. Inter. 103, 55 (1997).
(
10.1016/S0031-9201(97)00020-4
) / Phys. Earth Planet. Inter. by Matsui M. (1997) -
Cohen R. E., Stixrude L., Wassermann E., Phys. Rev. B 56, 8575 (1997).
(
10.1103/PhysRevB.56.8575
) / Phys. Rev. B by Cohen R. E. (1997) -
Belonoshko B., Ahuja R., Phys. Earth Planet. Inter. 102, 171 (1997).
(
10.1016/S0031-9201(97)00014-9
) / Phys. Earth Planet. Inter. by Belonoshko B. (1997) -
Rose J. H., Smith J. R., Guinea F., Ferrante J., Phys. Rev. B 29, 2963 (1984).
(
10.1103/PhysRevB.29.2963
) / Phys. Rev. B by Rose J. H. (1984) -
Foiles S. M., Daw M. S., Phys. Rev. B 38, 12643 (1988).
(
10.1103/PhysRevB.38.12643
) / Phys. Rev. B by Foiles S. M. (1988) - K.K. would like to thank P. Entel and R. Meyer (Duisburg) for many helpful discussions and support. This work has been supported by the DOE under contract nos. W-7405-ENG-36 and LDRD-DR 2001501 and by the German science council (Deutsche Forschungsgemeinschaft) through the Graduate College “Structure and Dynamics of Heterogeneous Systems” and SFB 445. It is also a pleasure to thank our colleagues S. Grabowski J. Hammerberg R. Ravelo and J. S. Wark. Supporting Online Material www.sciencemag.org/cgi/content/full/296/5573/1681/DC1 Materials and Methods Movies S1 and S2
Dates
Type | When |
---|---|
Created | 23 years ago (July 27, 2002, 5:54 a.m.) |
Deposited | 8 months, 1 week ago (Dec. 8, 2024, 2:44 p.m.) |
Indexed | 2 weeks ago (Aug. 6, 2025, 7:59 a.m.) |
Issued | 23 years, 2 months ago (May 31, 2002) |
Published | 23 years, 2 months ago (May 31, 2002) |
Published Print | 23 years, 2 months ago (May 31, 2002) |
@article{Kadau_2002, title={Microscopic View of Structural Phase Transitions Induced by Shock Waves}, volume={296}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1070375}, DOI={10.1126/science.1070375}, number={5573}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Kadau, Kai and Germann, Timothy C. and Lomdahl, Peter S. and Holian, Brad Lee}, year={2002}, month=may, pages={1681–1684} }