Crossref journal-article
American Association for the Advancement of Science (AAAS)
Science (221)
Abstract

Chemical dynamics trajectory simulations were used to study the atomic-level mechanisms of the OH − + CH 3 F → CH 3 OH + F − S N 2 nucleophilic substitution reaction. The reaction dynamics, from the [OH⋯CH 3 ⋯F] − central barrier to the reaction products, are simulated by ab initio direct dynamics. The reaction's potential energy surface has a deep minimum in the product exit channel arising from the CH 3 OH⋯F − hydrogen-bonded complex. Statistical theories of unimolecular reaction rates assume that the reactive system becomes trapped in this minimum and forms an intermediate, with random redistribution of its vibrational energy, but the majority of the trajectories (90%) avoided this potential energy minimum and instead dissociated directly to products. This finding is discussed in terms of intramolecular vibrational energy redistribution (IVR) and the relation between IVR and molecular structure. The finding of this study may be applicable to other reactive systems where there is a hierarchy of time scales for intramolecular motions and thus inefficient IVR.

Bibliography

Sun, L., Song, K., & Hase, W. L. (2002). A S N 2 Reaction That Avoids Its Deep Potential Energy Minimum. Science, 296(5569), 875–878.

Authors 3
  1. Lipeng Sun (first)
  2. Kihyung Song (additional)
  3. William L. Hase (additional)
References 45 Referenced 346
  1. T. Baer W. L. Hase Unimolecular Reaction Dynamics. Experiments and Theory (Oxford Univ. Press New York 1996). (10.1093/oso/9780195074949.001.0001)
  2. A. Fersht Enzyme Structure and Mechanism (Freeman New York ed. 2 1985).
  3. J. E. Baldwin in The Chemistry of the Cyclopropyl Group vol. 2 Z. Rappoport Ed. (Wiley London 1995) pp. 469–493. (10.1002/0470023481.ch9)
  4. 10.1126/science.266.5187.998
  5. 10.1126/science.279.5358.1882
  6. Hase W. L., Acc. Chem. Res. 31, 659 (1998). (10.1021/ar970156c) / Acc. Chem. Res. by Hase W. L. (1998)
  7. Uzer T., Phys. Rep. 199, 73 (1991). (10.1016/0370-1573(91)90140-H) / Phys. Rep. by Uzer T. (1991)
  8. Quack M., Troe J., Ber. Bunsenges. Phys. Chem. 78, 240 (1974). (10.1002/bbpc.19740780306) / Ber. Bunsenges. Phys. Chem. by Quack M. (1974)
  9. J. I. Steinfeld J. S. Francisco W. L. Hase Chemical Kinetics and Dynamics (Prentice-Hall Upper Saddle River NJ ed. 2 1999).
  10. Lim K. F., Brauman J. I., J. Chem. Phys. 94, 7164 (1991). (10.1063/1.460724) / J. Chem. Phys. by Lim K. F. (1991)
  11. 10.1126/science.242.4886.1645
  12. Metz R. B., Weaver A., Bradforth S. E., Kitsopoulos T.-N., Neumark D. M., J. Phys. Chem. 94, 1377 (1990). (10.1021/j100367a034) / J. Phys. Chem. by Metz R. B. (1990)
  13. 10.1103/PhysRevLett.55.2471
  14. K. Bolton W. L. Hase G. H. Peslherbe in Multidimentional Molecular Dynamics Methods D. L. Thompson Ed. (World Scientific London 1998) pp. 143–189. (10.1142/9789812812162_0005)
  15. Hernández M. I., Campos-Martinez J., Villarreal P., Schmatz S., Clary D. C., Phys. Chem. Chem. Phys. 1, 1197 (1999). (10.1039/a808511k) / Phys. Chem. Chem. Phys. by Hernández M. I. (1999)
  16. Schmatz S., Botschwina P., Hauschildt J., Schinke R., J. Chem. Phys. 114, 5233 (2001). (10.1063/1.1350902) / J. Chem. Phys. by Schmatz S. (2001)
  17. Vande Linde S. R., Hase W. L., J. Chem. Phys. 93, 7962 (1990). (10.1063/1.459326) / J. Chem. Phys. by Vande Linde S. R. (1990)
  18. Tonner D. S., McMahon T. B., J. Am. Chem. Soc. 122, 8783 (2000). (10.1021/ja000881+) / J. Am. Chem. Soc. by Tonner D. S. (2000)
  19. Sun L., Hase W. L., Song K., J. Am. Chem. Soc. 123, 5753 (2001). (10.1021/ja004077z) / J. Am. Chem. Soc. by Sun L. (2001)
  20. Graul S. T., Bowers M. T., J. Am. Chem. Soc. 116, 3875 (1994). (10.1021/ja00088a024) / J. Am. Chem. Soc. by Graul S. T. (1994)
  21. Viggiano A. A., Morris R. A., Paschkewitz J. S., Paulson J. F., J. Am. Chem. Soc. 114, 10477 (1992). (10.1021/ja00052a050) / J. Am. Chem. Soc. by Viggiano A. A. (1992)
  22. Wang H., Hase W. L., J. Am. Chem. Soc. 117, 9347 (1995). (10.1021/ja00141a029) / J. Am. Chem. Soc. by Wang H. (1995)
  23. Craig S. L., Brauman J. I., J. Phys. Chem. A 101, 4745 (1997). (10.1021/jp970602d) / J. Phys. Chem. A by Craig S. L. (1997)
  24. DeTuri V. F., Hintz P. A., Ervin K. M., J. Phys. Chem. A 101, 5969 (1997). (10.1021/jp971452+) / J. Phys. Chem. A by DeTuri V. F. (1997)
  25. Kato S., Davico G. E., Lee H. S., DePuy C. H., Bierbaum V. M., Int. J. Mass Spectrom. 210, 223 (2001). (10.1016/S1387-3806(01)00398-0) / Int. J. Mass Spectrom. by Kato S. (2001)
  26. Viggiano A. A., et al., J. Am. Chem. Soc. 116, 2213 (1994). (10.1021/ja00084a099) / J. Am. Chem. Soc. by Viggiano A. A. (1994)
  27. 10.1021/ja00180a003
  28. Shi Z., Boyd R. J., J. Am. Chem. Soc. 112, 6789 (1990). (10.1021/ja00175a008) / J. Am. Chem. Soc. by Shi Z. (1990)
  29. Riveros J. M., Sena M., Guedes G. H., Xavier L. A., Slepetys R., Pure Appl. Chem. 70, 1969 (1998). (10.1351/pac199870101969) / Pure Appl. Chem. by Riveros J. M. (1998)
  30. Gonzales J. M., Cox R. S., Brown S. T., Allen W. D., Schaefer H. F., J. Phys. Chem. A 105, 11327 (2001). (10.1021/jp012892a) / J. Phys. Chem. A by Gonzales J. M. (2001)
  31. The ab initio calculations were performed with the Gaussian computer program package [M. J. Frisch et al. Gaussian98 (Gaussian Pittsburgh PA 1998)].
  32. Larson J. W., McMahon T. B., J. Am. Chem. Soc. 105, 2944 (1983). (10.1021/ja00348a003) / J. Am. Chem. Soc. by Larson J. W. (1983)
  33. Fukui K., J. Phys. Chem. 74, 4161 (1970). (10.1021/j100717a029) / J. Phys. Chem. by Fukui K. (1970)
  34. Hase W. L., et al., Quantum Chem. Program Exch. 16, 671 (1996). / Quantum Chem. Program Exch. by Hase W. L. (1996)
  35. G. H. Peslherbe H. Wang W. L. Hase in Advances in Chemical Physics vol. 105 D. M. Ferguson J. I. Siepman D. G. Truhlar Eds. (Wiley New York 1999) pp. 171–201. (10.1002/9780470141649.ch6)
  36. Millam J. M., Bakken V., Chen W., Hase W. L., Schlegel H. B., J. Chem. Phys. 111, 3800 (1999). (10.1063/1.480037) / J. Chem. Phys. by Millam J. M. (1999)
  37. Bakken V., Millam J. M., Schlegel H. B., J. Chem. Phys. 111, 8773 (1999). (10.1063/1.480224) / J. Chem. Phys. by Bakken V. (1999)
  38. Hase W. L., Buckowski D. G., Swamy K. N., J. Phys. Chem. 87, 2754 (1983). (10.1021/j100238a014) / J. Phys. Chem. by Hase W. L. (1983)
  39. Hase W. L., Chem. Phys. Lett. 67, 263 (1979). (10.1016/0009-2614(79)85159-3) / Chem. Phys. Lett. by Hase W. L. (1979)
  40. The PST model used here assumes a loose TS with properties identical to those of the reaction products [
  41. Klots C. E., Mintz D., Baer T., J. Chem. Phys. 66, 5100 (1977)]. (10.1063/1.433766) / J. Chem. Phys. by Klots C. E. (1977)
  42. Hu X., Hase W. L., J. Phys. Chem. 96, 7535 (1992). (10.1021/j100198a012) / J. Phys. Chem. by Hu X. (1992)
  43. Peslherbe G. H., Hase W. L., J. Chem. Phys. 105, 7432 (1996). (10.1063/1.472571) / J. Chem. Phys. by Peslherbe G. H. (1996)
  44. Woolley R. G., Adv. Phys. 25, 27 (1976). (10.1080/00018737600101352) / Adv. Phys. by Woolley R. G. (1976)
  45. Financial support for this research was generously provided by NSF.
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 5:54 a.m.)
Deposited 1 year, 7 months ago (Jan. 9, 2024, 9:19 p.m.)
Indexed 1 month, 3 weeks ago (July 2, 2025, 1:29 p.m.)
Issued 23 years, 3 months ago (May 3, 2002)
Published 23 years, 3 months ago (May 3, 2002)
Published Print 23 years, 3 months ago (May 3, 2002)
Funders 0

None

@article{Sun_2002, title={A S N 2 Reaction That Avoids Its Deep Potential Energy Minimum}, volume={296}, ISSN={1095-9203}, url={http://dx.doi.org/10.1126/science.1068053}, DOI={10.1126/science.1068053}, number={5569}, journal={Science}, publisher={American Association for the Advancement of Science (AAAS)}, author={Sun, Lipeng and Song, Kihyung and Hase, William L.}, year={2002}, month=may, pages={875–878} }